
How to debug flash with Digital Discovery

When developing a new host board, it's important to know the hardware specification and observe the

timing of signals. Digilent Digital Discovery provides a High Speed Logic Analyzer that allows users to

visualize and analyze the signals traversing through development board. For example, in the process of

developing a new field programmable gate array (FPGA) board, the speed of the QSPI transactions in the

boot sequence isn’t specified clearly. To solve this issue, we use the Digital Discovery to visualize the

boot sequence to debug the logic.

Step 1: Connecting the Digital Discovery

First of all, we use the SOIC clip connect Digital Discovery with the on-board flash.

Step 2: QSPI script

Then, a custom interpreter is used to translate the QSPI signals into data. This is activated by adding a

“Custom” channel from the Logic instrument in Digilent WaveForms. (see below javascript code)

// rgData: input, raw digital sample array

// rgValue: output, decoded data array

// rgFlag: output, decoded flag array

var c = rgData.length // c = number of raw samples

var pClock = false; // previous cock signal level

var iStart = 0; // used to keep track on word start index

var cByte = 0; // byte count per transmission

var cBits = 0; // bit counter

var bValue = 0; // value variable

var fCmd = true;

for(var i = 0; i < c; i++){ // for each sample

 var s = rgData[i]; // current sample

 var fSelect = 1&(s>>0); // pin0 is the select signal

 var fClock = 1&(s>>1); // pin1 is the clock signal

 var fData = 1&(s>>2); // pin2 is the data signal

 var fData4 = 0xF&(s>>2); // DIN 2-5 DQ 0-3

 if(fSelect != 0){ // select active low

 // while select inactive reset our counters/variables

 iStart = i+1; // select might become active with next sample

 cByte = 0;

 cBits = 0;

 bValue = 0;

 pClock = false;

 fCmd = true;

 continue;

 }

 if(pClock == 0 && fClock != 0){ // sample on clock rising edge

 bValue <<= 4; // serial data bit, MSBit first

 bValue |= fData4;

 cBits++;

 if(cBits==2){ // when got the 8th bit of the word store it

 cByte++;

 // store rgValue/Flag from word start index to current sample

position

 for(var j = iStart; j < i; j++){

 // Flag change will be visible on plot even when data remains

constant.

 // This is useful in case we get more consecutive equal

values.

 rgFlag[j] = cByte;

 rgValue[j] = bValue;

 }

 iStart = i+1; // next word might start after this sample

 cBits = 0; // reset bit count for the next byte

 bValue = 0; // reset value variable

 }

 }

 pClock = fClock; // previous clock level

}

Step 3: Trigger and acquisition

Although the maximum QSPI clock frequency is about 100 MHz, when booting, a maximum frequency of

25 MHz is used. Also, the entire boot transfer takes about 700 ms. Because of this, both a large number

of samples and a decent sample rate are required, and this is where the Digital Discovery comes in

handy. 268 million samples at 200 MHz would translate into a ~1.3 second frame.

The acquisition itself is quite demanding, using a lot of the PC's memory (16 GB) and it also takes a long

time to process the data.

The trigger is set on the falling edge of the CS signal.

Below is the entire QSPI transaction captured by Digilent Waveforms.

Step 4: Boot transfers

There are two documents that need to be read in order to understand what the data transfers

represent. One is the Zynq TRM and the other one is the flash memory's datasheet.

The instructions sent from the Zynq to the flash memory are always sent via SPI using D0. The first

instruction sent is 0x03 0x00 0x00 0x20 which means SPI READ from address 0x20 and the reply is also

received via SPI using D1, 0x66 0x55 0x99 0xaa. The flash read instruction is explained on page 85 of the

datasheet.

In the Zynq TRM pages 170 and 179 explain what that reply means. In short, that set of bytes tell the

Zynq that the memory is QSPI capable. It is also important to observe that, at this point, the SPI clock

frequency is 5.405 MHz, which is a relatively low speed.

https://www.google.ro/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjapcyd7uDVAhVE6xQKHVlnBewQFggmMAA&url=https%3A%2F%2Fwww.xilinx.com%2Fsupport%2Fdocumentation%2Fuser_guides%2Fug585-Zynq-7000-TRM.pdf&usg=AFQjCNGKIF3-QJmuzE4eaFW3E9aJUG-iAA
https://www.google.ro/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjTgJvg7uDVAhVI6xQKHfqpA74QFggmMAA&url=http%3A%2F%2Fwww.cypress.com%2Ffile%2F177966%2Fdownload&usg=AFQjCNGhj1bFGD6gfZGYWPR6pdwql2Oc3w

From this point on, since it has been determined that the memory supports QSPI, all transactions will be

done on all 4 data lines. For instance, the next instruction will be 0x6b followed by a 3 byte address.

0x6b represents a quad read instruction and the response will be seen on the QSPI interpreter after 8

clock periods, which are “dummy” bytes.

In this case, the address is 0x1d and 7 bytes are read. These bytes are from addresses 0x1d, 0x1e, 0x1f

which are part of an interrupt table and then it reads 4 bytes from address 0x20 which are the same

bytes read at the first SPI read.

The Zynq will proceed to read bytes, incrementing the address until it reaches 0x45, which is the end of

the bootROM header.

Unfortunately, because we do not have access to the BootROM code, the rest of the boot sequence is

not so transparent. At some point, the FSBL (first stage boot loader) will begin to run, most likely where

the SPI clock frequency changes to 25 MHz as seen below, 84 ms after the boot process started.

The FSBL will then read the boot image and analyze the different partitions that it contains, including the

.bit file, which will configure the Zynq's PL, and the .elf which will run in the ARM.

