

Saving Board Space Using Low ESR Polymer Capacitors

MUM

ACCELERATING

<u>600</u>

Targeting SMPS

(Switch-Mode Power Supplies) Output Capacitors

SMPS (Specifically DC/DC Convertors) are in most of today's electronic devices

Output capacitors of DC/DC Converters can act as energy carriers and can have a direct impact on functionality and filtering quality

Datasheets of semiconductor devices often don't show the various available options for the given electrical requirements and the capacitor selection criteria

Capacitor Hi CV Technologies

Technology Overlap

ELECTROLYTIC CAPACITOR TYPES TECHNOLOGIES

WetSolidElectrolyticsElectrolytics

Electrolytic Capacitors

Tantalum Wet

- Large Cap in Large Case
- Long Life, High Reliability
- Harsh Environment
- High Energy Density

Al Wet / Al Solid / Hybrid

- Large Cap in Large Case
- Lowest Price
- Limited Lifetime

- Polar Components
- Consists of Anode, Cathode & Dielectric
- DC Operation

Ta Anode / MnO₂ Cathode

- Large Cap in Small Case
- Long Life, High Reliability
- Harsh Environment
- High Energy Density

NbO Anode / MnO₂ Cathode

- High Safety
- Very High Reliability

Ta Anode / Polymer Cathode

- Low ESR
- High Volumetric Efficiency
- Benign Failure Mode
- Wide Voltage Range

Electrolytic Comparison

PARAMETERS

Attribute	MnO ₂	Polymer	OxiCap®
Benefits	 No noise Highest CV/cc High Reliability -55°C - +230°C Stable Cap V/T Indefinite Lifetime Mechanically Robust 	 No Noise Low ESR High Voltage Benign Failure High Reliability Stable Cap V/T Surge Resistant -55°C/+105/150°C 10% or 20% Derating 	 Fail Safe Self-Healing Highest Reliability Indefinite Lifetime Surge Resistant 20% Derating -55°C - +125°C Stable Cap V/T No Noise
Check	< 50V Ratings50% Derating	Moisture Sensitive	 ≤ 10V Ratings

DC Bias – Capacitance Change

Key Features – Details I

Temperature Dependency

Capacitance vs. DC Voltage

Tantalum/NbO/Polymer & MLCC

 Stable Capacitance with DC/AC Voltage BIAS & Temperature

Figure 3. Capacitance versus temperature behavior by different dielectric types. Chart Credit: Kemet

Figure 4. Cap versus DC Bias behavior by different dielectric types, Chart Credit: Murata

Figure 5. Cap versus AC voltage behavior by different dielectric types, Chart Credit: Murata

Key Features – Details II

Tantalum/NbO/Polymer & MLCC

Low ESR and High Ripple Load (at high "switching" frequency)

WATCH FOR WORKING FREQUENCY

MLCC's ESR may be even higher than tantalum at low frequencies (sub 1kHz)

Fig 7. Capacitor smoothing function in a rectifier circuit.

This is then reflected into the capacitors' power dissipation and ripple current load capability. *Figure 6. ESR and IMP versus freq. behavior by different dielectric types, Chart Credit: Wikimedia*

RIPPLE CURRENT

Specific Comparison – 1210 Equivalent

	ML	CC	Standard	d Ta Chip	Polymer	Ta Chip	NbO Chip	o OxiCap [®]
Attributes	Commercial	AEC-Q200	Commercial	AEC-Q200	Commercial	AEC-Q200	Commercial	AEC-Q200
Max Capacitance 1210	100uF	10uF	150uF	100uF	220uF	47uF	47uF	47uF
Voltage Range 1210	4v - 500v	16v - 100v	4v - 50v	4v - 50v	2v - 125v	2v - 125v	4v - 10v	4v - 10v
Typical ESR 1210	2 - 15m Ohms	10 - 40m Ohms	300 - 800m Ohms	300 - 800m Ohms	30 - 200m Ohms	70 - 250m Ohms	300 - 600m Ohms	300 - 600m Ohms
Temperature Range	-55°C - +85°C	-55°C - +125 / +150°C	-55°C - +125°C	-55°C - +125 / +200°C	-55°C - +105 / +125°C	-55°C - +125°C	-55°C - +105°C	-55°C - +125°C
Base Reliability	N/A	N/A	1% / 1000 hrs	(0.05 - 1%) / 1000 hrs	1% / 1000 hrs	1% / 1000 hrs	0.02 - 0.05% / 1000 hrs	0.02 - 0.05% / 1000 hrs
Primary Failure Mode	Short	Short	Short	Short	Short	Short	Resistive	Resistive
Lifetime (10% Cap loss @ Tmax / Vmax)	Indefinite	Indefinite	Indefinite	Indefinite	10,000 hrs	10,000 hrs	Indefinite	Indefinite
Recommended Voltage Derating	20%	20%	50%	50%	20%	20%	20%	20%
Disadvantages	Commercial	AEC-Q200	Commercial	AEC-Q200	Commercial	AEC-Q200	Commercial	AEC-Q200
Voltage Coefficient	Cap Loss Vs V	Cap Loss Vs V						
Piezo Noise	@ Audio Frequencies	@ Audio Frequencies	N/A	N/A	N/A	N/A	N/A	N/A
Reverse Voltage			Not Allowed	Not Allowed	Not Allowed	Not Allowed	Not Allowed	Not Allowed
Mechanical Robustness	Caution	Caution	No Issues	No Issues	No Issues	No Issues	No Issues	No Issues

© AVX Corporation

AWAX | www.avx.com

XXXX www.avx.com

Which Capacitor Technology?

There are several different capacitor technologies available for the output capacitor area.

Output Capacitor SWITCHING DC/DC CONVERTER

Capacitor Parameters

Summary Table of Output Capacitor Static Measurements

Capacitor Technology	Level of the ESR at f _{sw} = 300 kHz	Capacitance Stability vs. Temperature	Capacitance Stability vs. DC Voltage Bias	ESR Stability vs. Temperature
Ta-Polymer		0	0	\checkmark
Ta-MnO ₂ (Single)	0	\checkmark	\checkmark	0
NbO-MnO ₂	0	0	0	0
Ta-MnO ₂ (Multi)	\checkmark		\checkmark	0
MLCC	X		X	0
Aluminium - Electrolytic	🗙 too high	×	\checkmark	×

SMPS Measuring Appliance

Output Ripple Voltage Waveform – 3.3V Bus

Summary Table of prev. slide test measurements

Capacitor Technology	AC Vrms at 25 °C	Vrms Stability vs. Temperature	Capacitance Stability vs. DC Voltage Bias
Ta-Polymer			
Ta-MnO ₂ (Single)	0	0	0
NbO-MnO ₂			0
Ta-MnO ₂ (Multi)		\checkmark	_
MLCC	X	×	0
Aluminium - Electrolytic	×	×	×

AI & HiCV MLCC Replacement

Al Electrolytic

- Large Case Size
- Limited Lifetime
- Limited Lead-Free Assembly
- Limited Operation Temperature

Replace with HiCV SMD Polymer

X5R MLCC

- Noise/Voltage Coefficient
 Limitation
- Limited Operation Temperature
- Very Low ESR

Replace with HiCV SMD Ta, Conductive Polymer, or X7R/Polymer Combination

Achieve target bulk capacitance, broadband, and low notch ESR.

Saving Board Space

Conclusion

For optimal functionality, efficiency and circuit stability of SMPS; designers have to carefully select output capacitors considering:

- Capacitance stability
- ESR stability
- Temperature range (stability)

Different technologies exhibit different parameters and behavior

Polymer Series Line SOLID ELECTROLYTIC CAPACITORS

Summary

- Special attention should be paid to the feedback loop stability in the case of using MLCC with its very low ESR
- Conventional AI-EI capacitors are not suitable due to very high ESR and potentially causing high output ripple voltage resulting in temperature instability
- Low ESR Tantalum-Polymer and Tantalum-MnO₂ capacitors have the best performance with a multi-anode construction when measured by AC Vrms and Vrms temperature stability, alternatively combined with MLCCs to cover filtration and smooth output single at above 1.5MHz frequency area
- MnO₂ Tantalum is the best solution for temperatures up to 200°C applications
- NbO OxiCap[®] and polymer is the best solution for temperatures up to 125°C/150°C applications

AVX Customer Support DESIGN TOOLS

RF MICROWAVE	PARAMETERS & MODELS	e de la companya de la		
SPI2MM (HARD M	ETRIC CONNECTORS)			
SPICALCI 9.0				
SPICAP 3.0				
COMPONENT SIM	ULATOR			
SPITAN IV (WEB E	ASED VERSION - POLYME	R, TANTALUM AND NIO	BIUM CAPACITORS)	-
wet tantalum axial curves vs. frequen and S-parameter s	capacitors. Main new feature by and temperature, maximal 2p files generator.	s include e.g. maximal ES Lleakage current curve vs	sr SpiT	IV IV
😨 Open SpiTAN	V Simulation Software			
Open SpiTAN	IV Simulation Software.			<
Open SpiTAN	IV Simulation Software	MATCHING SEARCH		<
Open SpiTAN	IV Simulation Software.	MATCHING SEARCH	DRS	<
CRYSTAL AND RE D MODELS POL	IV Simulation Software SONATOR VS. JC CIRCUIT YMER, TANTALUM AND NK YMER, TANTALUM and N	MATCHING SEARCH DBIUM OXIDE CAPACITO	ors itors	

Design Tools

- Spi TanIV ESR, Frequency Leakage Current V's Time, S2P
- 3D Model CAD Drawings STEP Format

More Information | AVX Polymers

Part Number Information

THANK YOU.

Please contact your local AVX Sales or Arrow Representative with questions.

NINGA KYOCERA GROUP COMPANYO M I D In
WWW.AVX.COM