
Connect Arrow SmartEverything Fox board

to the Watson IoT Platform

Requirements

 Arrow SmartEverything FOX device registered and connected to the Sigfox backend.
 A Bluemix application based on the "Internet of Things Platform Starter" boilerplate.
 Access to the Sigfox backend to setup the integration towards the Watson IoT Platform

application in Bluemix.

Steps

1. Introduction

This guide is building on the content from another guide:

Connecting Sigfox backend to Watson IoT Platform – with the following changes and

additions:

o We will add a new Device type and callback script in the Sigfox backend to reflect
another device type in step 5

o We will make changes to the Watson IoT Platform gateway in step 6 to change the
device type.

o We will make changes to the Watson IoT Platform application in step 7 to extract the
SmartEverything data and visualize them in a node-red dashboard.

You'll need to run through the other guide before continuing with the next steps in this

guide, hence have access to the Sigfox backend and your Bluemix application with the

Watson IoT Platform service working properly.

2. SmartEverything: Prepare the device to be a weather station

Download the User Guide for the Arrow SmartEverything here:

http://docs-europe.electrocomponents.com/webdocs/144b/0900766b8144b09d.pdf

Follow the steps in Chapter 5 of this User Guide in order to setup your development

environment for the Arrow SmartEverything device.

https://static4.arrow.com/-/media/files/arrow-aris-edge/connecting-sigfox-backend-to-watson-iot-platform.pdf?la=en
http://docs-europe.electrocomponents.com/webdocs/144b/0900766b8144b09d.pdf

Then go to https://github.com/nicolsc/sigfox-weather-station to get the code and

instructions for the Weather Station.

You should now be up and running with the weather station on your Arrow

SmartEverything utilizing the Sigfox network to submit the following data in the 12 bytes

available every 10 minutes:

o Pressure in mbar
o Temperature in °C
o Humidity in %

3. Sigfox: Create new Device type and callback script

3.1. Go to the Sigfox Backend, where you login with your credentials and go to the Device Type tab:

3.2. Click on New in the upper right corner in case you haven't already created a device type for

your SmartEverything, and fill in the details for this new device type, e.g. like this:

https://github.com/nicolsc/sigfox-weather-station
https://backend.sigfox.com/

Click on OK.

3.3. Go to the Callbacks section:

3.4. Follow step 5.4-5.7 in the other guide:

Connecting Sigfox backend to Watson IoT Platform – by building an IoT Gateway in Bluemix.

Then add the content to the Body in order to send over the parameters available

+ the device type, so you can use that in the Gateway:

{

"time" : "{time}",

"deviceType": "SmartEverything",

"device" : "{device}",

"duplicate" : "{duplicate}",

"snr" : "{snr}",

"rssi" : "{rssi}",

"avgSnr" : "{avgSnr}",

"station" : "{station}",

"lat" : "{lat}",

"lng" : "{lng}",

"seqNumber" : "{seqNumber}",

"data" : "{data}"

}

– and we are done creating the callback:

https://developer.ibm.com/recipes/tutorials/connecting-sigfox-backend-to-watson-iot-platform/#r_step5

3.5. Click on OK

3.6. Add your device as this Device type using the Device ID and PAC provided with the

SmartEverything device.

The device is now properly configured in the Sigfox backend to send data over to the Watson

IoT Platform.

4. WIoTP: Edit the IoT Gateway in Node-Red to extract device type from message

At the end of step 6 in the other guide, the flow for the Gateway looked like this:

https://developer.ibm.com/recipes/tutorials/connecting-sigfox-backend-to-watson-iot-platform/#r_step6

We will now edit the Resend as Gateway function node to reflect the SmartEverything device

type.

4.1. Double click the function node and change the line that define the deviceType, so it

looks like this:

4.2. Deploy the application. A new deviceType will be created at the Watson IoT Platform called

SmartEverything and new data flowing in from that specific deviceType in the Sigfox backend

will be accessible.

Go to the Device tab at your Watson IoT Platform of your application and you will see that your

device have been auto registered with the new deviceType (once it have send some data):

5. WIoTP: Edit the "IoT Platform" Node-Red flow for receiving the SmartEverything data

At the end of step 7 in the other guide, the flow for the IoT Platform looked like this:

We will now change this flow to receive MQTT messages for the devices of the

SmartEverything device type and extract the data for temperature, humidity and barometric

pressure.

5.1. Double click the IBM IoT node and change Device Type to SmartEverything and click

Done:

https://developer.ibm.com/recipes/tutorials/connecting-sigfox-backend-to-watson-iot-platform/#r_step7

5.2. Add a function node and add the following code to decode the SmartEverything data

(including temperature, humidity and barometric pressure):

Below is the code in textual form, to make it easier for you to create your “Retrieve SmartEverything

information” function node:

var seData = msg.payload.d.data;

var pressure = parseInt(seData.substring(0,8),16);

msg.payload.d.pressure = pressure.toString();

var humidity = parseInt(seData.substring(16,24),16);

msg.payload.d.humidity = humidity.toString();

var tempStr = '0x' + seData.substring(8,16);

var temp = parseFloatOwn(tempStr);

msg.payload.d.temp = temp.toFixed(2);

return msg;

// Functions:

function parseFloatOwn(str) {

 var float = 0, sign, order, mantiss,exp,

 int = 0, multi = 1;

 if (/^0x/.exec(str)) {

 int = parseInt(str,16);

 }else{

 for (var i = str.length -1; i >=0; i -= 1) {

 if (str.charCodeAt(i)>255) {

 console.log('Wrong string parametr');

 return false;

 }

 int += str.charCodeAt(i) * multi;

 multi *= 256;

 }

 }

 sign = (int>>>31)?-1:1;

 exp = (int >>> 23 & 0xff) - 127;

 mantiss = ((int & 0x7fffff) + 0x800000).toString(2);

 for (i=0; i<mantiss.length; i+=1){

 float += parseInt(mantiss[i])? Math.pow(2,exp):0;

 exp--;

 }

 return float*sign;

}

5.3. Drag in another debug node and change it to Output: complete msg object. Connect the

additional nodes to the existing flow and optionally rename the two debug nodes:

5.4. Deploy the application and wait until a new message is received and then compare the two

debug messages.

The “IoT Platform received” debug node output shows the raw data

(“0000040a41cfc7520000002d”) and the new deviceType (“SmartEverything”):

The “SmartEverything Data” debug node output shows the added extracted data added by the

function node:

6. WIoTP: Edit the "IoT Platform" Node-Red flow to visualize the SmartEverything data

We'll use the node-red-dashboard capabilities to visualize the extracted data from the

SmartEverything device on a dashboard. First we have to add that library to your application:

6.1. Go to the Node-red editor of your application, e.g. http://sigfoxgw.eu-gb.mybluemix.net/red.
Select Manage palette in the right menu:

6.2. Press the Install tab:

6.3. Write “node-red-dashboard” in the search field and then press “install” once the node-red-

dashboard library is found:

6.4. Wait until the nodes have been added:

6.5. Press Done:

6.6. Reload the web page and scroll down to the bottom of the nodes and you will now see this:

Then we are ready to use the newly added Dashboard capabilities in our application.

The following steps will guide you to change the “IoT Platform” flow to look like this:

6.6.1. First add the three function nodes and connect them to the “Retrieve SmartEverything

information” function node:

Extract Temperature – the msg.topic value will be shown in the chart node replacing

“data”:

– in text:

msg.payload = msg.payload.d.temp;

msg.topic = "Temperature";

return msg;

Extract Humidity:

– in text:

msg.payload = msg.payload.d.humidity;

msg.topic = "Humidity";

return msg;

Extract Pressure:

– in text:

 return {payload:msg.payload.d.pressure};

6.6.2. Deploy the application. Drag in a dashboard chart node and start configuring it

by adding a new Group to the dashboard – click at the pencil:

6.6.3. We need to create the first Tab by clicking the pencil:

6.6.4. Give it a name like SmartEverything:

6.6.5. Press Add. Change the Width to 10 and give it a Name, e.g. Indoor 1:

6.6.6. Press Add. Label it Temperature, change the X-axis to last 2 days,

and define a custom X-axis Label as “Y-MM-DD – HH:mm:ss”:

6.6.7. Press Done and connect the chart node to the “Extract Temperature” function node.

Add another Chart node. Label it Humidity, change the X-axis to last 2 days,

and define a custom X-axis Label as “Y-MM-DD – HH:mm:ss”:

6.6.8. Press Done and connect the chart node to the “Extract Humidity” function node.

Drag in a dashboard gauge node and connect it to the “Extract Temperature” function

node.

Configure the gauge node: change the Group to “Add new ui_group” and press the pencil:

6.6.9. Give it another name, e.g. Indoor 2:

6.6.10. Press Add. Change Title to Temperature. Change Label to C. Change Range to 0-50.

Optionally change the Color gradients:

6.6.11. Press Done. Drag in a dashboard gauge node and connect it to the “Extract Humidity”

function node.

Change Group to Indoor 2. Change Title to Humidity. Change Label to %. Change Range to

0-100.

Optionally change the Color gradients:

6.6.12. Press Done. Drag in a dashboard gauge node and connect it to the “Extract Pressure”

function node.

Change Group to Indoor 2. Change Title to Pressure. Change Label to mbar. Change Range

to 800-1200.

Optionally change the Color gradients:

6.6.13. Press Done. Select the dashboard tab in the upper right corner. Select the Dark Theme.

Optionally change the Title.

Expand the two Groups and this is what you should see:

6.6.14. Deploy the application.

6.6.15. You access the dashboard by changing the url in your browser to point at /ui in

your Bluemix application,

e.g. http://sigfoxgw.eu-gb.mybluemix.net/ui.

Enough data has flown in after two days and the dashboard could look like this:

Note: Moving the cursor into the Temperature chart shows the measured temperature at a given time.

The format is defined by the msg.topic =”Temperature”; in step 1 and the customized X-axis Label in

step 6.

