
Prevent edge node attacks by
securing your firmware
Configuring Kinetis® MCU capabilities
with ARM® mbed™ TLS for a secure boot
Donnie Garcia, Solutions Architect for Secure Transactions, NXP

Diya Soubra, Senior Product Marketing Manager, ARM

Abstract

The reality of a world filled with smart and aware devices is that there is a world of
attack possibilities versus the technology our society is reliant upon. Just consider the
scenario where an IoT edge node is attacked by replacing firmware to allow access
to a trusted network. In today’s Internet of Things (IoT) world of connected devices,
phishing scams perpetrated by re-purposing edge nodes is a real threat. Therefore, a
plan for the development, manufacturing and deployment of IoT edge node devices
must be made. The complexities of life cycle management create a demanding
environment where the end developers must make use of a range of hardware security
features, software components and partnership to achieve their security goals and
prevent malicious firmware from being installed onto IoT edge node devices. Essential
to sustaining end to end security is a secure and trusted boot, which can be achieved
with the right MCU hardware capabilities and ARM® mbed™ TLS. This paper will
introduce a life cycle management model and detail the steps for how to achieve a
secure boot with a lightweight implementation leveraging NXP® ARM Cortex®-M-
based microcontrollers with mbed TLS cryptography support.

Secure designs begin with a security model consisting of policies, an understanding
of the threat landscape and the methods used to enforce physical and logical security.
In order to protect firmware execution within today’s threat landscape, there must
be a policy to only allow execution of authenticated firmware. The methods used to
enforce this policy rely on MCU security technology to create a protected boot flow.
The boot firmware can contain public key cryptography to authenticate application
code. In addition to these components integrated in the end device, there are tools
and steps that must be taken in the manufacturing environment using manufacturing
hardware for code signing and host programs for provisioning.

	 2

Introduction: Internet of Things Phishing

From connected villages to intelligent vehicles, the value of connecting various sensors to improve efficiency
is spurring visionaries to develop Internet of Things (IoT) edge nodes. Innovation around smart and connected
electronic devices is pushing technology into scenarios that were unimaginable just a short time ago. The way we
go about our daily lives is changing because of technology adoption around the IoT. This technology adoption is
a contributing factor to the security threat of focused attacks using IoT edge devices as a platform for phishing.
As user acceptance and trust in our technology increases, people are more willing to provide credentials to their
smart watch, sprinkler system or home camera.

Just as email phishing scams that come with malicious attachments or links that lure users to malware, a
determined attacker can take an un-protected IoT edge node device, repurpose it with malicious firmware and
use it to access protected data or services. For the case of an IoT edge node phishing scheme, this would be
providing access to user networks leading to data breaches or even distributed denial of service attacks.

At the root of this vulnerability is that too many embedded designs do not protect their firmware with a
trusted boot flow including application authentication before execution. Implementing this level of security is a
challenge, but with the proper planning, the right hardware, software and tools, firmware can be protected from
such attacks. This paper outlines the design and development of an implementation that can be done using
NXP Kinetis® MCUs along with ARM mbed TLS support. It will also outline the future of embedded security with
microcontroller enhancements such as TrustZone® for ARMv8-M to provide a foundation for a more efficient and
developer-friendly security solution in the future.

Table of Contents

Abstract... 1

Introduction: Internet of Things Phishing................ 2

Lifecycle View.. 3

Security Model... 4

Secure Boot System Architecture............................ 5

Applying NXP Kinetis MCU Security
Technology with ARM mbed TLS............................. 6

 Necessary Hardware Features................................... 6

 Software and Tools Resources................................... 8

Lifecycle with KBOOT Tools and Secure Boot....... 10

 Development Stage.. 10

 Manufacturing Stage... 10

A Foundation for Future Secure
Embedded Systems... 11

 ARM TrustZone for ARMv8-M Overview................. 12

 TrustZone for ARMv8-M Use Cases........................ 13

Conclusions.. 13

References... 13

	 3

Lifecycle View

The challenge with regards to making a secure embedded device can be represented in the lifecycle view shown
in Figure 1. The IoT edge node device flows through several stages. These are shown on the left of the diagram
as Development, Manufacturing and Deployment. Within these stages of the lifecycle the product could be
in Secure Environments or Less-Trust Environments as shown at the top of the diagram. For example, in the
development stage, application code could be developed by external developers which would be in a Less-Trust
Environment. Alternatively, if the firmware development is handled by trusted internal developers then this would
be in the more Secure Environment.

Figure 1: Lifecycle View for Secure IoT Edge Node

3	

LIFECYCLE	VIEW	
The	challenge	with	regards	to	making	a	secure	embedded	device	can	be	represented	in	the	lifecycle	
view	shown	in	Figure	1.	The	IoT	edge	node	device	flows	through	several	stages.	These	are	shown	on	the	
left	of	the	diagram	as	Development,	Manufacturing	and	Deployment.	Within	these	stages	of	the	lifecycle	
the	product	could	be	in	Secure	Environments	or	Less-Trust	Environments	as	shown	at	the	top	of	the	
diagram.	For	example,	in	the	development	stage,	application	code	could	be	developed	by	external	
developers	which	would	be	in	a	Less-Trust	Environment.	Alternatively,	if	the	firmware	development	is	
handled	by	trusted	internal	developers	then	this	would	be	in	the	more	Secure	Environment.		

Figure	1:	Lifecycle	view	for	secure	IoT	edge	node	
De

ve
lo
pm

en
t	P

ha
se

M
an

uf
ac
tu
rin

g	
Ph

as
e

De
pl
oy

ed
	P
ha

se

Secure	EnvironmentsLess-Trust	Environments

Application
Firmware

Secure	
Boot	

Firmware

Cloud	Service

Security	
Policies

Audit Application
Firmware

Security	
Tool	

Firmware

Factory	
SecTool

Firmware	
Loading	Policies

Assembly	
Policies

User	Policies
Cloud	Service

Audit

Secure	
Boot	

Firmware

Signed	
Application
Firmware

Signed	
Application
Firmware

Device	Assembling	ProcessDevice	Assembling	Process

Developers

Cloud	Service

Secure	
Boot	

Firmware

Factory	
SecTool

Factory	
SecTool

	

Throughout	the	lifecycle,	there	are	important	policies	that	govern	how	the	device	should	be	handled.	
These	are	detailed	below	as	the	Security	Policies,	Firmware	Loading	Policies,	Assembly	Policies	and	User	
Policies.	Some	examples	for	the	contents	for	these	essential	documents	are	in	the	following	Table	1.	

Table	1:	Policies	for	lifecycle	management	

Policy		 Examples	

Throughout the lifecycle, there are important policies that govern how the device should be handled. These are
detailed below as the Security Policies, Firmware Loading Policies, Assembly Policies and User Policies. Some
examples for the contents for these essential documents are in the following Table 1.

Table 1: Policies for Lifecycle Management

Policy Examples

Security policies ensure that the application code maintains the
security of the end device.

•	 No prompts for sensitive data such as Enter PIN or password

•	 A list of words that the end device should not say

Firmware loading policies ensure that the proper steps are taken and
controls are in place to protect the programming of the end device.

•	 Password control for firmware source binaries

•	 Upon receiving the microcontroller, the device should be
completely erased to ensure that it is in a known state (no
un-wanted firmware)

Assembly policies ensure that only approved components are used. •	 All components should be inspected for expected for proper
markings during assembly

User policies provide guidelines for the end user to maintain the
security of the device.

•	 Visual inspection of the device for tampering

•	 Device should be physically protected behind locked doors

In the development phase, the product owner develops a factory security tool and security tool firmware. This
tool is used to generate public key/private key pairs, sign application firmware and interface securely to a cloud
service provider. The product owner also develops the root of trust firmware such as the secure bootloader. This
firmware performs secure boot and secure boot loading. This stage is where sensitive data such as product IDs
and service IDs are generated. These secrets can be passed to the cloud service provider in the development
phase.

	 4

For the case of a controlled manufacturing site that is in a secure environment, the factory security tool is used
only to sign application firmware. Then standard tools can be used to place the root of trust firmware and signed
application firmware. Microcontroller security mechanisms are used to protect the root of trust firmware. For the
scenario where a less-trusted manufacturing site is used, then the factory security tool could be deployed there.
The factory security tool can interface to the cloud service provider securely to get the root of trust firmware. The
foot of trust firmware must be securely placed on to the end device. Once the secure bootloader is on the end
device, then the device will only accept and execute signed application code.

To implement such a lifecycle requires preset agreements with multiple parties, such as application code
developers, external manufacturing sites, cloud service providers and component manufacturers. There are
policies and audits which need to be in place. The complexities of lifecycle management create a demanding
environment where the end developers must make use of a range of hardware security features, software
components and partnership to achieve their security goals and prevent malicious firmware from being installed
onto IoT edge node devices. The following sections provide details on the design for the factory security tool
and root of trust firmware providing a secure bootloader which are central components to this view.

Security Model

When designing a secure system, it is important to apply a security model. A security model is built from
policies, the threat landscape and methods as shown in Figure 2. This model provides a framework for
understanding and designing to the security goals of the device. The methods, or how the security policies are
enforced to achieve product goals, are made possible by the security technology that is integrated into the
embedded controllers such as NXP’s Kinetis ARM Cortex-M MCUs.

Figure 2: Security Model

Policies

• The rules in place that identify the data that should be protected, fo
 • For example
 • The management of firmware, secret keys, user and application data
 • Passwords, personal information, network credentials

• The definition of the attacks and attackers that the end device will face and protect against
 • Considers the access to the device, and cost of the attack
 • For example
 • Expert attackers who will use off-the-shelf tools to gain access and insert malware

• The means by which the policies for the device are enforced
 • Involves the application of security technology to achieve product goals
 • For example
 • Protecting secret keys with tamper response using the Kinetis MCU anti-tamper

Threat
Landscape

Methods

	 5

As an example, for the case of protecting firmware, a security model would be represented by what is shown in
Figure 3. There is a policy that only authenticated firmware should ever be executed. The threat landscape typical
for an IoT edge node is attackers will have physical access to the device and so its communication and debug
ports could be exploited. Lastly, the methods that make use of microcontroller security technology supporting
trust, cryptography and anti-tamper will be employed to enforce the security policy to the levels demanded by
the threat landscape.

Figure 3: Secure Boot Security Model

Trusted
Execution

Crypto
Acceleration

Tamper-
resistance

Policies Threat
Landscape Methods

Only authenticated
firmware should
be executed

Physical access to
the device debug
and communication
ports

Devices will have different polices and face various threats as these aspects are application specific, but
the underlying technology and the methods employed can be leveraged for many cases. The secure boot
implementation addresses a wide range of security policies. As detailed in the following sections with the right
hardware, software and tools, it can be achieved with limited impact to product cost and performance goals.

Secure Boot System Architecture

With a security model in place, the next stage of development is creating the secure boot system architecture.
This provides the details of the components needed to achieve the secure boot with authentication of application
firmware. Figure 4 represents this system level view of the components and how they interact with one another.

Figure 4: Secure Boot System Architecture

Authenticated Application Code

Unchangeable Boot Code

Kinetis K28F
Hardware Features: Flash Security, Flash Block Protection,

HW acceleration for SHA256 and AES, TRNG

MCUXpresso SDK

RTOS

Middleware

SDK

KBOOT
Boot interfaces, Command parser,

Memory programming

mbed TLS
Public Key/Private Key Generation,
Signature Generation &Verification

Manufacturing
MCUXpresso IDE,
Key management,
Code Signing tools
(Kinetis hardware
with KBOOT and

host tools)

Deployment
Application tool

chain, Host
programmer

At the base of Figure 4 there is the hardware providing physical and logical security. This is where microcontroller
capabilities are necessary to protect data, perform cryptography and monitor access to memories and
peripherals. Sitting above the hardware must be unchangeable boot code. This code must always run when
the device is powered. This boot code contains low level drivers to set up relevant security peripherals, a
cryptography stack for authentication and or confidentiality of data and a way to load application code (a
bootloader).

	 6

With the unchangeable boot code present on the right hardware, application code that is loaded on the device is
authenticated upon every boot. Application code can be changed but the cryptographic authentication applied
to the code by the secure boot ensures that the changes are only and always provided by a trusted entity.

Application code can make use of all or a portion of the microcontroller resources as determined by the secure
boot code. This is because upon boot, the secure boot code is always executed first, ensuring proper resource
management.

Represented on the left of Figure 4 are tools used in the manufacturing and deployment of the device. The
microcontroller must be programmed, so tools for key management, creating firmware files and connecting and
downloading firmware into the device are needed to implement the secure boot design. With these components
considered the goal of authenticating application firmware upon every boot is achievable.

Applying NXP Kinetis MCU Security Technology with ARM mbed TLS

Kinetis ARM Cortex-M-based microcontrollers have been architected to support high security applications. As
detailed in the Kinetis MCUs security brochure, numerous hardware features are supported across the hundreds
of Kinetis MCU products, which can be enabled to support cryptography, trust and tamper resistance in the end
device. For the purposes of the secure boot implementation, we will utilize features that are available on most
Kinetis MCU devices. To assist the developer, the following sections will reference the Kinetis K28_150MHz
device; a higher memory integration device offering 2MB of embedded flash and 1MB of embedded SRAM. The
following sections will highlight the specific capabilities and configurations needed to achieve the secure boot
with regards to hardware, software and tools.

The Necessary Hardware Features

At the hardware level, there are several functions the microcontroller must support. These are controlling the
boot flow of the device, protecting memory resources and making firmware immutable. The following section will
detail how this is achieved for the Kinetis K28 150MHz device.

Control of Boot Flow
Kinetis MCUs are architected to boot up from internal memory. This protects against the threat of hijacking an
embedded application by changing an external memory device. Some Kinetis devices like the K28 150MHz MCU
have an internal ROM. For this implementation, the internal ROM is bypassed so that the trusted secure boot
code can be customized using internal flash. This is done by setting non-volatile control register bits [BOOTSRC_
SEL] as highlighted in Figure 5 from reference manual section 7.3.4 Boot Sequence. Once configured this way,
the RESET module state machine of the K28_150MHz device will ensure that internal flash will be fetched and the
secure boot code will always run.

Figure 5: Control of Boot Flow

Power On Reset
(POR)

Reset to Processor

Configure and boot
from internal flash.

POWER ON

Boot from
On-Chip
Flash?

Load BCA
(Boot Configuration

Area)

[BOOTSRC_SEL]=0x RESET module

BOOT ROM module

FOPT [BOOTSRC_SEL]:
00 = Internal Flash
01 = Reserved
10 = ROM -> QSPI Yes
11 = ROM -> QSPI No

[BOOTSRC_SEL]=1x

http://www.nxp.com/docs/en/brochure/BRKINETISSECSOLS.pdf
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/kinetis-cortex-m-mcus/k-series-performance-m4/k2x-usb/kinetis-k28-150-mhz-2x-usb-core-voltage-bypass-2mb-flash-1mb-sram-mcus-based-on-arm-cortex-m4:K28_150
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/kinetis-cortex-m-mcus/k-series-performance-m4/k2x-usb/kinetis-k28-150-mhz-2x-usb-core-voltage-bypass-2mb-flash-1mb-sram-mcus-based-on-arm-cortex-m4:K28_150
http://www.nxp.com/docs/en/reference-manual/K28P210M150SF5RM.pdf

	 7

Flash Block Protection
As detailed in section 33.3.3.6 of the K28_150MHz reference manual, “The FPROT registers define which
program flash regions are protected from program and erase operations. Protected flash regions cannot have
their content changed; that is, these regions cannot be programmed and cannot be erased…”

The protected region size is chip specific as they are defined as program flash size divided by 32. In the case
of a 2MB flash like the K28_150 device, these are 64KB blocks. This is substantial space for this secure boot
implementation, but for smaller flash size devices, multiple blocks could be configured. As shown in Figure 6,
the FPROT3[PROT0] control bit must be set and the unchangeable boot code placed at memory map location
0x0000_0000 to protect the secure boot code.

Figure 6: Using Flash Block Protection

0x0000_0000

0x0020_0000

Program Flash size/32

Program Flash size/32

Program Flash size/32

Program Flash size/32

Program Flash size/32

FPROT3[PROT0]

FPROT3[PROT1]

FPROT3[PROT2]

FPROT3[PROT30]

FPROT3[PROT31]

Cryptography Stack
Code Confidentiality and/or

Authentication

Unchangeable Boot Code

SDK Low Level Drivers
Trusted configuration for chip firewalls and interfaces

for protection of resources

Bootloader
Boot interfaces, Command

parser, Memory programming

Chip Security Setting
Once development of the secure boot code is completed, the chip security setting can be set to disable access
from JTAG/SWD port and restrict data accesses to internal memory. See reference manual section 9.2 Flash
Security. The only allowable flash command once the security is enabled is the mass erase operation. This
ensures that the data residing inside the chip cannot be read. Furthermore, the mass erase operation can also be
disabled if the MEEN bit in the FSEC register is set to %01. See reference manual section 33.3.3.3 Flash Security
Register (FTFE_FSEC).

Flash Configuration Field
The control registers for controlling boot flow, setting flash block protect and chip security settings are all part of
a block of non-volatile registers as detailed in section 33.3.1 Flash Configuration Field Configuration. As detailed
in Figure 7, these registers are physically located in the memory map starting at address 0x0_400. These registers
are also mirrored into peripheral registers to represent the settings that have been pre-configured. For the case
of flash block protection (FPROT), the settings can be changed during run time to increase areas of protection,
but never decrease protection. This allows the secure boot code to dynamically protect regions of flash by
increasing areas of protection.

Figure 7: Flash Configuration Field

Flash Configuration Field Offset Address Size (Bytes) Field Description

0x0_0400 - 0x0_0407 8 Backdoor comparison key.

0x0_0408 - 0x0_040B 4 Program flash protection bytes. Refer to the description of the Program
Flash Protection Registers (FPROT0-3).

0x0_040F 1 Reserved

0x0_040E 1 Reserved

0x0_040D 1 Flash nonvolatile option byte. Refer to the description of the Flash
Option Register (FOPT).

0x0_040C 1 Flash nonvolatile option byte. Refer to the description of the Flash
Security Register (FSEC).

http://www.nxp.com/docs/en/reference-manual/K28P210M150SF5RM.pdf
http://www.nxp.com/docs/en/reference-manual/K28P210M150SF5RM.pdf
http://www.nxp.com/docs/en/reference-manual/K28P210M150SF5RM.pdf
http://www.nxp.com/docs/en/reference-manual/K28P210M150SF5RM.pdf

	 8

Tools Interaction with Flash Configuration Field
When using the flash configuration field, it is possible to completely block any debug access and programming
of the K28_150MHz device. The default configuration of integrated development environments and debugger
tools is different across different tool chains. So, to achieve the hardware configuration needed, the specific
toolchain must be configured to allow access. Figure 8 represents where these settings can be done in the
MCUXpresso, which is available at no cost, IDE using the FRDM-K28F Freedom development board with an
integrated CMSIS-DAP debugger tool. Extreme care must be taken when using these fields. Extreme care must
be taken when using these fields because the chip can be locked out in flash programming if the program image
does not have these fields setup correctly.

Figure 8: Using MCUXpresso IDE

9	

Figure	7:	Flash	Configuration	Field	

	

Tools	Interaction	with	Flash	Configuration	Field	
When	using	the	flash	configuration	field,	it	is	possible	to	completely	block	any	debug	access	and	
programming	of	the	K28_150MHz	device.	The	default	configuration	of	integrated	development	
environments	and	debugger	tools	is	different	across	different	tool	chains.		So,	to	achieve	the	hardware	
configuration	needed,	the	specific	toolchain	must	be	configured	to	allow	access.	Figure	8	represents	
where	these	settings	can	be	done	in	the	MCUXpresso	IDE	using	the	FRDM-K28F	Freedom	development	
board	with	an	integrated	CMSIS	DAP	debugger	tool.	Extreme	care	must	be	taken	when	using	these	
fields.	

Figure	8:	Using	MCUXpresso	IDE		

	

SOFTWARE	AND	TOOLS	RESOURCES		

ARM	mbed	TLS		
To	satisfy	the	cryptography	needed	for	the	secure	boot	implementation,	the	solution	uses	the	
MCUXpresso	Software	Development	Kit	(SDK)	configured	with	ARM	mbed	TLS	support.	The	MCUXpresso	
SDK	software	abstracts	the	interface	to	the	available	hardware	peripherals	with	a	package	consisting	of	
peripheral	drivers,	middleware,	board	specific	configurations	and	application	code.	Within	the	package	
there	are	many	demo	applications.	For	ARM	mbed	TLS,	there	are	two	demo	applications	that	can	be	
leveraged	to	gain	a	working	knowledge	of	the	software	library.	These	are	the	test	and	benchmark	
applications.		

Software and Tools Resources

ARM mbed TLS
To satisfy the cryptography needed for the secure boot implementation, the solution uses the MCUXpresso
Software Development Kit (SDK) configured with ARM mbed TLS support. The MCUXpresso SDK software
abstracts the interface to the available hardware peripherals with a package consisting of peripheral drivers,
middleware, board specific configurations and application code. Within the package there are many demo
applications. For ARM mbed TLS, which is available at no cost, there are two demo applications that can be
leveraged to gain a working knowledge of the software library. These are the test and benchmark applications.

When ARM mbed TLS support is ported onto Kinetis devices, the software is configured to make use of
available microcontroller hardware resources. In the case of the K28_150MHz MCU, this is using the MMCAU
cryptographic accelerator block that assist with AES, DES and hash operations.

Formerly Polar SSL, the ARM mbed TLS library is perfectly aligned to the needs of the secure boot development.
The library is well documented and supported with numerous discussion forum post and code examples. The
library is available as opens source under the Apache 2.0 license, which allows the code to be used in closed
source projects. In addition, the library was created to be modular and with the consideration of the constraints of
embedded systems allowing developers to fine tune their use of the library for the needs of specific applications.

As a representation of the alignment to our needs for secure boot, Figure 9 details the main use cases for the
library. As shown on the left, the library has modules related to key exchange. The specific capabilities provided
by the public key module are represented on the right. Here we see the functions which we have introduced
in the system architecture diagram (Figure 4) for generating a public key pair, signing a message, and verifying
signatures. The hardware abstraction provided by these functions greatly eases the burden on the end developer
for completing the necessary cryptographic operations.

Figure 9: ARM mbed TLS Design

SSL/TLS communication

TCP/IP communication

Data encryption/decryption

Application

X.509 certificate handling

Hashing/HMAC generation

Random number generation

Secured communication
framework

Provides Internet
communication

Symmetric cipher protocols:
AES, ARCFOUR, Blowfish, Camelia,

(3)DES, XTEA)

Public key protocols:
Diffie-Hellman-Merkle (DHM),

Elliptic Curve (ECDHM),
ECDSA, Elliptic Curves and RSA

Certificate parsing, generation
and verification

One-way hashing functions
MD2, MD4, MD5 (128-bit)

SHA-1, SHA-224/SHA-256, SHA
384/SHA-512 (160-bit)

Random number generation
using CTR-CRBG algorithm.
Entropy pool and collector

Key exchange

Generate public keypair

Parse a private key

Encrypt a message

Application

Sign a message

Verify a signature

Exchange keys

Generate a publc/private
keypair

Parse a public/private keypair
from file or buffer

This is actually the calculation of a
master secret (key). It is a

sequence of events known as a
(Eliptic Curve)Diffie-Hellman-Merkle

key exchange.

Decrypt a message

Using public or private keys

http://www.nxp.com/products/software-and-tools/hardware-development-tools/freedom-development-boards/nxp-freedom-development-board-for-kinetis-k27-and-k28-mcus:FRDM-K28F
http://www.keil.com/support/man/docs/dapdebug/default.htm
https://tls.mbed.org
http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

	 9

The ARM mbed TLS source files which are critical for an ECDSA implementation of the secure boot are:
ec_curve.h, eccurve_config.h, ecdsa.h, ecdsa.c and ec_curve.c. Importing these files allows the end developer
to make use of the ecdsa context structure defining the key information and the supporting APIs related to
the ecdsa operations. Specifically, these APIs include ecdsa_genkey for public key generation. In addition, for
transferring curve information ec_use_known_curve_param API is used. Depending on the lifecycle stage of the
device, the ecdsa_sign and ecdsa_verify APIs are used. The curve selection is made in the eccurve_config.h file.
Here you can see the options for a scalable security level based on the curves supported by mbed TLS. There is
support for ECDSA curves ranging from SECP192 to SECP521.

KBOOT the Kinetis Bootloader
Providing the bootloader functions is the NXP Kinetis Bootloader product known as KBOOT. As shown in
Figure 10, KBOOT embedded software consist of peripheral interfaces, a command and data processor and
memory interfaces. KBOOT is provided as full source code and can be modified for end user needs.

Figure 10: KBOOT Block Diagram
A

bs
tra

ct
 B

yt
e

an
d

P

ac
ke

t I
nt

er
fa

ce
s Command &

Data Processor

• Command phase
 state machine

I2C Slave

SPI Slave

UART

USB Device
HID/MSC

CAN

QuadSPI Flash

Peripheral Interfaces

Flash

RAM

I/O

Memory Interfaces

A
bs

tra
ct

 M
em

or
y

In
te

rfa
ce

• Command handlers

There are processor defines for configuring which peripheral interfaces should are enabled. This serves as a dual
purpose as it allows for a way to optimize for code size and addresses security because it disables interfaces to
the bootloader functions from unsupported peripheral interfaces. An example of how to use these defines is
shown in the KBOOT reference manual section 11.6 Modifying a Peripheral Configuration Macro. The reference
manual also details the command API that is supported by the command and data processor block. In addition
to the base commands for downloading firmware, the command API includes the ability to direct the device
to execute firmware. This functionality is used in the factory setting to execute specific functions and extract
signature and key data.

Depending on the end device, KBOOT supports provisioning for all available memory interfaces. For example,
on the K28_150MHz MCU, in addition to RAM and Flash, KBOOT can manage the placement of data into
external serial NOR flash via the QuadSPI interface.

KBOOT Tools
In addition to the KBOOT software which runs on the device, KBOOT also includes other tools packages that run
on Linux®, Mac® or Windows® host machines. These are shown below in Figure 11.

Figure 11: KBOOT Tools

12	

Figure	11:	KBOOT	Tools	

	

For	the	processing	of	binaries,	elf	files	and	srecords	there	is	a	tool	named	elftosb.	The	elftosb	tool	takes	
commands	from	BD	files.	BD,	short	for	boot	descriptor	file	is	an	input	command	file	used	by	elftosb	to	
create	secure	binary	files	(sb	file).	The	sb	file	contains	commands	and	firmware	data	that	is	sent	to	the	
device	that	is	running	the	KBOOT	bootloader.	The	blhost	tool	is	what	is	used	to	process	the	sb	files	and	
interface	to	the	devices	running	KBOOT.		Also,	worth	mentioning	is	the	Kinetis	Flash	Tool	and	the	Kinetis	
MCU	host	application	but	these	are	not	used	in	this	implementation.	

Both	elftosb	and	blhost	are	provided	as	source	code	and	can	be	built	for	different	operating	systems.	
Figure	12	shows	a	typical	workflow	for	using	the	KBOOT	tools.	Moving	from	left	to	right,	first	the	elftosb	
tool	is	used.	Based	on	commands	passed	by	a	BD	file,	the	elftosb	tool	takes	input	firmware	files	and	
creates	the	secure	binary.	With	a	secure	binary,	at	a	different	time	and	place,	a	host	PC	running	blhost	
tool	can	be	used	to	provision	a	Kinetis	microcontroller	like	the	K28_150MHz	device	that	is	running	
KBOOT.		

Figure	12:	Typical	KBOOT	Workflow	

	

	

El
fto

sb Elftosb :
processing of
binaries, elf and
SREC files into
secure binaries
(Special formats
to work with
KBOOT)
Capable of
encrypting files,
generating keys

B
lh

os
t Command line

program that
interfaces to a
Kinetis MCU
running KBOOT

Supports every
KBOOT command

Ki
ne

tis
 F

la
sh

 T
oo

l Graphical user
interface to
interface to a
Kinetis MCU
running KBOOT

Easier to use than
blhost, but not as
powerful K

in
et

is
 M

C
U

 H
os

t Kinetis K66
application that
performs host
functionality to a
Kinetis MCU
running KBOOT

Input files
Commands

Input files
Firmware

ELF

SREC

BD file

Binary

Input files
Keys for
encrypt

elftosb SB file

USB FS Kinetis HW
with KBOOTblhost

http://www.nxp.com/products/reference-designs/kinetis-bootloader:KBOOT?&tid=vanKBOOT
http://www.nxp.com/docs/en/reference-manual/K28P210M150SF5RM.pdf

	 10

For the processing of binaries, elf files and srecords there is a tool named elftosb. The elftosb tool takes
commands from BD files. BD, short for boot descriptor file is an input command file used by elftosb to create
secure binary files (sb file). The sb file contains commands and firmware data that is sent to the device that
is running the KBOOT bootloader. The blhost tool is what is used to process the sb files and interface to the
devices running KBOOT. Also, worth mentioning is the Kinetis Flash Tool and the Kinetis MCU host application
but these are not used in this implementation.

Both elftosb and blhost are provided as source code and can be built for different operating systems. Figure
12 shows a typical workflow for using the KBOOT tools. Moving from left to right, first the elftosb tool is used.
Based on commands passed by a BD file, the elftosb tool takes input firmware files and creates the secure binary.
With a secure binary, at a different time and place, a host PC running blhost tool can be used to provision a
Kinetis microcontroller like the K28_150MHz device that is running KBOOT.

Figure 12: Typical KBOOT Workflow

Input Files
Firmware

Input Files
Commands

Input Files

Host PC with
KBOOT tools

elftosb SB file blhost

K28F HW
with KBOOTUSB FS

BD file

SREC

Keys for
encrypt

Binary

ELF

Lifecycle with KBOOT Tools and Secure Boot

The following section relates the secure boot implementation and KBOOT tools to the lifecycle view introduced
in Figure 1.

Development Stage

During the product development stage, there are two separate firmware developments which are done in the
secure environment (please refer to Figure 1). Both developments are based on the software described in the
previous sections, KBOOT and ARM mbed TLS.

The two developments are:

•	 Factory Security Tool Firmware

	 − �This bootloader application is for use in a secure manufacturing environment. The main security functions
in addition to bootloader functions are to generate a PUB/PRIV key pair and to generate the signature for
application code using the private key.

•	 Secure Boot Firmware

	 − �This bootloader application is for use in a deployed device. The main security functions in addition to
bootloader functions are to check the signature of application code using the public key, and only allow
execution of the application code if the signature is authentic.

The firmware for the Factory SecTool and Secure Boot is completely independent of application code
development. Application code development can occur on a different target device, by different developers. As
shown in Figure 13 below, memory mapping on the left, this development can follow a traditional development
flow for microcontrollers. During the manufacturing stage, the resulting firmware files can be relocated as shown
on the memory mapping on the right to work with the secure boot firmware, which includes KBOOT and mbed
TLS cryptography.

	 11

Figure 13: Memory Map for Application Development

Manufacturing

0x0020_0000

0x0001_0000

0x0000_FFFF

0x0000_8000

0x0000_0000

0x0020_0000

0x0000_0000 KBOOT
Public Key

mbed TLS
(Cryptography)

Signature

Your IoT
Application

Code

Protected
Unchangeable

Your IoT
Application

Code

Manufacturing Stage

After the application code has been audited versus security policy guidelines as shown in Figure 1, the following
steps can be taken to complete the manufacturing of end devices that use a secure boot. Steps 1 and 2 are
represented at the top of Figure 14, and you’ll find steps 3 and 4 at the bottom.

1) Application SREC is combined with Factory BD file to create the Factory Secure Binary (Factory.SB)

2) �Using HW with the Factory Security Tool firmware, the Factory.sb is downloaded and blhost commands are
used to extract binaries for signature and public keys.

3) Application SREC is combined with signature binary to make the Production secure binary (Production.sb)

4) Production secure binary is used to program final hardware

Figure 14: Manufacturing with KBOOT

blhost

Host PC with
KBOOT tools

Using KBOOT for Signature Generation

elftosb blhost

USB FS

USB FS

K28F HW
for KBOOT

Factory
Application

Factory
SB

Factory
SB

App
SREC

App
SREC

Factory
BD

Production
SB

Production KBOOT HWProduction
SB

Production
BD

PubKey
bin

PubKey
bin

Signature
bin

Signature
bin

blhost

Host PC with
KBOOT tools

blhost

Host PC with
KBOOT tools

blhost

Host PC with
KBOOT tools

+

+

+
+

Once a public key, private key pair is generated in steps 1 and 2, the programming of the production image
can occur on all devices that will be protected by the same private key. Variations of this implementation can
be made to address multiple key pairs and roll back protections. For example, multiple public key/private key
pairs can be generated and stored onto the device during the manufacturing stage and then selected based on
version settings.

A Foundation for Future Secure Embedded Systems

The principles and guidelines introduced in the previous sections provide a basis for secure embedded designs,
but are not without challenges. Firstly, microcontroller resources (embedded flash memory) must be used.
Future microcontroller devices could be improved. Integration of the secure boot capabilities into the ROM of
the device would allow optimizations with regards to memory and development time. In addition, hardware
acceleration for public key cryptography such as the ECDSA algorithm would reduce code size and boot times.
Finally, most exciting is the availability of new processor architectures such as ARMv8-M.

	 12

ARM® TrustZone® for ARMv8-M Overview

TrustZone is a technology used by ARM Cortex® processors to implement system-wide isolation of assets in a
system on chip (SoC). It is a widely-adopted technology that has been deployed in the market for over 10 years
providing SoC security. TrustZone is the basis for protecting high-value applications such as mobile payments
and digital rights management for media content. With the release of the ARMv8-M architecture, TrustZone was
introduced into the ultra-low power, small area, real-time Cortex-M processors that power the IoT.

As represented in Figure 15, isolation in TrustZone for ARMv8-M is implemented in hardware by the processor,
thus removing the need for a run-time software isolation layer. TrustZone for ARMv8-M reduces the number
of functions or API calls required to make a transition from non-trusted firmware to trusted firmware. This
dramatically improves the system efficiency.

Figure 15: Isolation of Resources

Secure services
Firmware

Secure data

Trusted
view

Data

Secure firmware

CPU resources

Non-trusted

Trusted

Memory

Peripherals

Two worlds - one CPU
Real-time transition*

*2≤cycles

Using TrustZone for ARMv8-M, the system is split into two parts, one for the trusted firmware and the other for
the user application. The trusted part cannot be accessed by the user side due to the hardware isolation. In the
case that the user application is hacked via a software attack, then the trusted code is expected to recognize
the unauthorized behavior and restore the user application code to a proper state. Given that these devices will
live in the field for many years, and future attack methods are not known as of today, this is the best method to
ensure a long, healthy life of an embedded solution.

Figure 16: TrustZone for ARMv8-M Use Cases

Root-of-trust applications -IoT IP Protection

Trusted drivers
Trusted hardware

Valuable firmware

Sandboxing

Trusted drivers
Trusted hardware

Certified OS / functionality

Trusted software

Crypto TRNG*

Trusted hardware
Secure
system

Secure
storage

Trusted Untrusted

* True random number generator

Industry
standard

Developer
friendly

Ecosystem
friendly

Embedded
friendly

https://developer.arm.com/products/processors
https://developer.arm.com/products/architecture/m-profile
http://www.arm.com/markets/internet-of-things

	 13

TrustZone® for ARMv8-M Use Cases

1.	Root of trust implementation
Connected devices with authentication requirements need a root of trust in the system architecture. This is
particularly important for devices that can be updated over the air. In a system with TrustZone technology,
code for firmware-update support and associated authentication can be placed in secure memory space, and
hence, protected. Even if a device is compromised at the application level, the Root of Trust functionality
cannot be altered and replaced with spurious firmware.

2.	Asset confidentiality management in IoT devices
Many IoT devices need to handle security-sensitive information, such as user details and security keys.
TrustZone technology allows this information and associated firmware (that can have direct access to this data)
to be stored in protected, secure memory space. The architecture design enables the application code running
in non-secure state access to the secure information via predefined APIs only (and if provided in the secure
software, via an authentication process).

3.	Firmware protection
Firmware shipped with the device includes valuable IP that needs to be protected. TrustZone technology
enables IP protection by allowing the supplier to put their firmware in protected, secure memory space, while
still allowing users to use the firmware via predefined API calls.

4.	Sandboxing for devices with certified software
Many devices, such as a wireless chipset, contain preloaded software, yet also allow developers to augment
functionality by adding their own application software components. Using TrustZone technology, the preloaded
firmware can be placed in the secure side and its behavior prevented from being altered or compromised
by applications running on the non-secure side. This helps ensure that certified firmware fulfills its mission as
originally certified. In addition, placing the firmware in the secure side helps protect it from being reverse-
engineered.

The hi-tech industry never sleeps. The drive towards lower power and higher performance efficiency continues.
For future embedded solutions, TrustZone for ARMv8-M is the foundation for a more efficient and developer-
friendly security solution. Find out more here: https://community.arm.com/processors/trustzone-for-armv8-m/.

Conclusions

In today’s connected world, the protection of firmware is an essential component to delivering solutions that
safeguard device manufacturers and their customers. Essential to sustaining end-to-end security is a secure
and trusted boot, which can be achieved with the right MCU hardware capabilities and ARM mbed TLS. NXP’s
microcontrollers contain the hardware features and software enablement that can be integrated to strengthen
end device security and protect value. As the drive towards lower power and higher performance efficiency for
IoT edge nodes continues, future capabilities in embedded controllers and ARM processors will provide the basis
for future security solutions for the IoT.

References

http://www.nxp.com/docs/en/reference-manual/KBTLDR200RM.pdf
http://www.nxp.com/docs/en/reference-manual/K28P210M150SF5RM.pdf
https://tls.mbed.org/high-level-design
https://tls.mbed.org/module-level-design-public-key
https://community.arm.com/processors/trustzone-for-armv8-m/

 www.nxp.com/Kinetis/Security

NXP, the NXP logo and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, Cortex and TrustZone are registered trademarks
of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. © 2017 NXP B.V.

Document Number: SECURITYWP REV 0

https://community.arm.com/processors/trustzone-for-armv8-m/
http://www.nxp.com/docs/en/reference-manual/KBTLDR200RM.pdf

http://www.nxp.com/docs/en/reference-manual/K28P210M150SF5RM.pdf

https://tls.mbed.org/high-level-design

https://tls.mbed.org/module-level-design-public-key

https://community.arm.com/processors/trustzone-for-armv8-m/
http://www.nxp.com/Kinetis/Security

