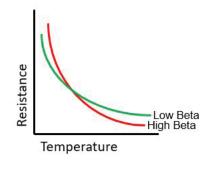


Application Spotlight

Thermistors FAQ

Thermistors FAQ

What are the Individual Parameters of a Thermistor?


Parameters include Zero-load Resistance Value, Beta (β) Constant, Ratio, Alpha (α), Thermal Time Constant (τ), Dissipation Constant (δ).

What is the Zero-load Resistance Value?

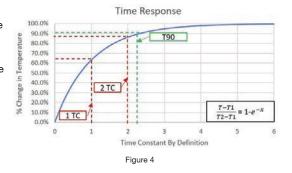
Zero-load Resistance Value is the resistance value of a thermistor measured at a prescribed temperature, also called no-load resistance value. The value is normally measured at a standard temperature of 25°C (R25). The measurement is conducted at a power level such that the influences of spontaneous heat generation can be negligible.

What is Beta (β) Constant?

The Beta Constant, shown in Figure 3, is the slope of the NTC thermistors resistance to temperature characteristic (in kelvins) over a specified temperature range according to the formula:

What is the Ratio?

The Ratio is the ratio of the resistance of a thermistor at two different temperature points.


What is the Alpha (α)?

What is the Thermal

Time Constant (τ) ?

The Alpha is the zero-power temperature coefficient of resistance, which is the ratio at a specified temperature, of the rate of change of zero-power resistance with temperature to the zero-power resistance of the thermistor. Put simply, it is the % change in resistance per degree C change in temperature at a specified temperature.

Thermal Time Constant, as shown in Figure 4, is the time required for a thermistor to change 63.2% of the total difference between its initial and final body temperature when subjected to a step function change in temperature under zero-power conditions.

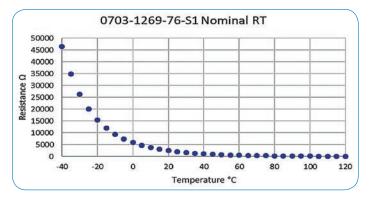
 $\beta = \left[\frac{T \times T_0}{T_0 - T}\right] \times \ln\left[\frac{R_T}{R_{T_0}}\right]$

What is the Dissipation Constant $(\bar{0})$?

Dissipation Constant is the ratio, (in milliwatts per degree C) at a specified ambient temperature, of a change in power dissipation in a thermistor to the resultant body temperature change. Simply, it is the power required to change the thermistor by 1°C through self-heating.

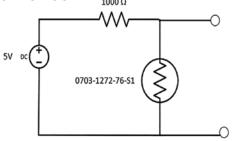
www.amphenol-sensors.com

© 2018 Amphenol Corporation. All Rights Reserved. Specifications are subject to change without notice.

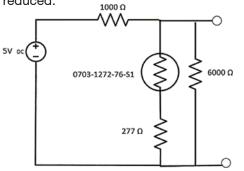


Application Spotlight

NTC Sensor Linearization

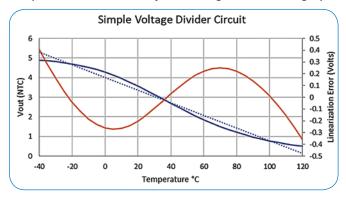

Resistance / Temperature

The resistance / temperature characteristics of an NTC based temperature sensor generally are defined by a 4th order polynomial equation and represented by a typical R/T curve. A general R/T is shown for the 0703-1272-76-S1 thermistor as a response to temperature.

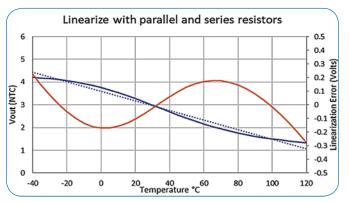

Sensing Circuit

In many instances the sensing circuit is a simple voltage divider network with a source voltage and series resistor.

Reduced Errors


By adding simple passive components in parallel and series with the NTC, these linearization errors can be reduced.

Amphenol Advanced Sensors


Linearization Errors

Over an extended temperature range, linearization errors will occur in the voltage output with respect to temperature as shown by the orange line on the graph.

Voltage Divider

This arrangement reduces linearization error by 32% over a simple voltage divider.

www.amphenol-sensors.com

© 2018 Amphenol Corporation. All Rights Reserved. Specifications are subject to change without notice. AAS-930-187A 02/2018