Heat Sink Design Guide & Ordering Parameters

Electronics manufacturers employ a variety of methods to manage thermal energy in electronics. One of the most common types of thermal management involves heat sinks. If you're looking for the right heat sink for your application, you should consider several important heat sink design factors before you buy. We'll cover five important heat sink parameters to keep in mind as you select an appropriate component.

1. Heat Sink Materials

One of the most critical parameters of a heat sink is the material from which it is constructed.  To efficiently move thermal energy away from a heat-generating component, the heat sink must have high thermal conductivity. Some of the more common construction materials for heat sinks are aluminum and copper. Lower-grade heat sinks can also be made out of stainless steel or other metal alloys, and these materials are also significantly more cost effective at large sizes.

2. Thermal Conductivity of Heat Sinks

You'll commonly find metal alloys at use in heat sinks because they have high thermal conductivity (which equals low thermal resistance). Thermal conductivity is a material's ability to move heat through itself, which makes it efficient at moving heat from a low surface area to a high surface area environment. Copper has a thermal conductivity of 388 W/m-C, while the "best" aluminum alloy, 6061, has a thermal conductivity of 180 W/m-C. Copper is therefore over two times more efficient at moving thermal energy through itself.

Thermal conductivity rates depend on the construction material as well as the coating and finish on the heat sink's surface. This coating allows the total thermal conductivity to vary across different heat sink models. If you're choosing a heat sink, be sure to specify not only the material but also the thermal conductivity as well.

3. Heat Sink Fins: Types and Impacts on Efficiency Style

A heat sink's fin style can significantly influence its ability to release thermal energy into the environment. However, fin style is generally subject to the shape of the heat-generating component. For example, a proper design would utilize a radial fin style when cooling a cylindrical shape, as opposed to a flat straight-fin heat sink.

4. Standard Heat Sink Components

Some common component styles produce high amounts of excess heat―such as Ball Grid Array (BGA) chips―and require the use of heat sinks. Heat sinks therefore come in similar standard sizes that will match those common component standard sizes. For example, a 23mm x 23mm BGA can be supplemented by a heat sink that is perfectly sized for a 23mm x 23mm BGA package, such as this heat sink.

관련 상품 참조

ATS-53230K-C1-R0

Advanced Thermal Solutions Heat Sinks 보기

5. Heat Sink Attachment Methods

Placing a heat sink on a component won't be enough to properly connect the component to the heat sink. You'll need an adhesive method to create a solid thermal connection between the heating component and the heat sink. You can use a thermal paste, thermal grease, or another thermally conductive adhesive.

To shop popular heat sinks, such as the heat sink for Raspberry Pi and more thermal management devices, visit our thermal management category page.

관련 상품 참조

114990125 | Heat Sink Kit for Raspberry Pi B+

Seeed Technology Co.,Ltd Heat Sinks 보기

최신 뉴스

Sorry, your filter selection returned no results.

개인정보 보호정책이 업데이트되었습니다. 잠시 시간을 내어 변경사항을 검토하시기 바랍니다. 동의를 클릭하면 Arrow Electronics 개인정보 보호정책 및 이용 조건에 동의하는 것입니다.

당사의 웹사이트에서는 사용자의 경험 향상과 사이트 개선을 위해 사용자의 기기에 쿠키를 저장합니다. 당사에서 사용하는 쿠키 및 쿠키 비활성화 방법에 대해 자세히 알아보십시오. 쿠키와 추적 기술은 마케팅 목적으로 사용될 수 있습니다. '동의'를 클릭하면 기기에 쿠키를 배치하고 추적 기술을 사용하는 데 동의하는 것입니다. 쿠키 및 추적 기술을 해제하는 방법에 대한 자세한 내용과 지침을 알아보려면 아래의 '자세히 알아보기'를 클릭하십시오. 쿠키 및 추적 기술 수락은 사용자의 자발적 선택이지만, 웹사이트가 제대로 작동하지 않을 수 있으며 사용자와 관련이 적은 광고가 표시될 수 있습니다. Arrow는 사용자의 개인정보를 존중합니다. 여기에서 당사의 개인정보 보호정책을 읽을 수 있습니다.