Machine Learning Solutions from Microchip Technology

The power of machine learning (ML) is only as good as the data inputs and the data training regiment. And, it can be extremely difficult to get a ML training model built from scratch. In this article, explore the wide range of premium machine learning models, products, systems, and solutions available from Microchip.

Explore the cutting-edge world of Microchip Technology Machine Learning, where you are empowered to create and implement advanced models effortlessly. Whether you're venturing into the realm of Microcontroller Units (MCUs) and Microprocessor Units (MPUs) or seeking specialized tools for image classification and video applications, this comprehensive suite of solutions has you covered.

Build Your Own Model

MCU/MPU Development with MPLAB® Machine Learning Development suite

Embark on your machine learning journey with Microchip's MPLAB® Machine Learning Development suite, seamlessly integrated as a plugin into MPLAB® X IDE. This all-encompassing solution streamlines the entire process—from data collection to model testing—culminating in a tailored knowledge pack for Microchip MCUs/MPUs.

0124-MCU-MPU-Development-Graphic

0124-Image-of-EV18H79A


These meticulously designed Machine Learning Evaluation toolkits specifically cater to inertial measurement unit (IMU) applications, focusing on vibration and sensor data analysis. Explore the following exceptional platforms: 

  • Features the SAMD21G18 Arm® Cortex®-M0+ based 32-bit MCU.
  • Equipped with an on-board debugger (nEDBG), ATECC608A CryptoAuthentication™ secure element IC, and ATWINC1510 Wi-Fi® network controller.


0124-Image-of-EV45Y33A

EV45Y33A SAMD21 Machine Learning Evaluation Kit with BOSCH IMU

  • Boasts the SAMD21G18 Arm Cortex-M0+ based 32-bit MCU.
  • Includes an on-board debugger (nEDBG), ATECC608A CryptoAuthentication secure element IC, and ATWINC1510 Wi-Fi network controller.


Curiosity Nano Evaluation Kit



Bring Your Own Model

If you have a pre-trained DNN model you can use either Microchip MPU or FPGA based on your use case.

For Audio/Image/Lower Frame Rate Video ML Applications (MPUs):

  • Convert TensorFlow models to TensorFlow Lite models using standard APIs
  • Utilize MPLAB Harmony V3 to integrate the ML run-time engine (TensorFlow Lite models) and peripherals seamlessly.


Evaluation tool kit



For Low Power and High Frame Rate Video Applications (FPGAs):

  • Microchip FPGAs offer a niche solution for demanding applications.
  • Leverage the VectorBlox™ Accelerator SDK for easy conversion of high-level Deep Neural Networks to TensorFlow Lite, even without prior FPGA design experience.


Evaluation tool kit

Accelerate your machine learning endeavors with Microchip Technology. Experience the power and ease-of-use of the evaluation kits and unlock the potential of intelligent computing.


Reference designs for MCU/MPUs:

SAMD21 Fan State Condition Monitoring

AVR DA Fan State Condition Monitoring

SAMD21 ML Kit Gesture Recognition


Reference designs for FPGAs:

Tutorial on using VectorBlox-SDK


Additional Resources:

ML Plugin User's Guide


최신 뉴스

Sorry, your filter selection returned no results.

개인정보 보호정책이 업데이트되었습니다. 잠시 시간을 내어 변경사항을 검토하시기 바랍니다. 동의를 클릭하면 Arrow Electronics 개인정보 보호정책 및 이용 조건에 동의하는 것입니다.

당사의 웹사이트에서는 사용자의 경험 향상과 사이트 개선을 위해 사용자의 기기에 쿠키를 저장합니다. 당사에서 사용하는 쿠키 및 쿠키 비활성화 방법에 대해 자세히 알아보십시오. 쿠키와 추적 기술은 마케팅 목적으로 사용될 수 있습니다. '동의'를 클릭하면 기기에 쿠키를 배치하고 추적 기술을 사용하는 데 동의하는 것입니다. 쿠키 및 추적 기술을 해제하는 방법에 대한 자세한 내용과 지침을 알아보려면 아래의 '자세히 알아보기'를 클릭하십시오. 쿠키 및 추적 기술 수락은 사용자의 자발적 선택이지만, 웹사이트가 제대로 작동하지 않을 수 있으며 사용자와 관련이 적은 광고가 표시될 수 있습니다. Arrow는 사용자의 개인정보를 존중합니다. 여기에서 당사의 개인정보 보호정책을 읽을 수 있습니다.