Automotive Capacitors: Applications and Standards

As automobiles grow more sophisticated, they rely increasingly on advanced electronic systems to operate. These systems control everything from convenience features like keyless entry and automatic windows, to the correct functioning of the engine and control, such as fuel pumps and power steering. Every new advancement in the design and function of automobiles necessitates more advanced electronic controls. From steering to braking to seat height adjustment, if the car system begins with “power,” it probably employs capacitors.

Additionally, the rising popularity of hybrid and electric vehicles coupled with exciting developments in supercapacitor applications offer a glimpse into the future of automotive capacitors. These devices may soon find their way into nearly every aspect of automotive design. Capacitors show promise in building superior regenerative braking systems, improving acceleration in electric cars, and creating efficient mass transit systems that do not rely on fossil fuels.

If you’ve seen capacitors certified as “automotive grade,” you might wonder what exactly that certification entails. What does it say about the components and their quality? Will automotive-grade components perform well in your application? After all, when you’re working on a project, you want parts that meet your needs and perform their functions well, but you don’t want to pay extra for components that far exceed the demands of your project.

Commercial vs. Automotive Capacitors 

The automotive standard for capacitors and other electronic components arose in the early 1990s as a response to the growth of the personal electronics sector. As electronic devices became more and more pervasive, components were in higher demand. In a surprising shift, automotive companies were no longer the primary buyers of electronic components.

As a result, manufacturers produced more and more components at varying levels of quality. A failure of a car’s electrical system can be a life-or-death affair,and the components endure harsh temperature conditions, weather, and other conditions. It is crucial that automotive components perform reliably no matter the circumstances.

Automotive Capacitors and the AEC-Q200 Standard

Eventually, the Automotive Electronics Council (AEC), an automotive industry organization, developed standards to ensure a category of components that met their safety and reliability requirements. Today, the standard that specifies automotive capacitors and other components is called AEC-Q200. This standard:

- Outlines the stress and performance tests that components must pass to be acceptable for use in automobiles.

- Details a variety of test parameters and minimum criteria.

- Divides components into five grades labeled 0-4.

5 Grades of Capacitor Applications and Temperature Parameters

The following chart summarizes the five grades, temperature parameters, and allowable applications for automotive capacitors and components. Grade 4 is the least stringent grade, and Grade 0 is the most stringent.

1018_auto_capacitors_chart

To gain certification, capacitors and other components must pass the following tests:

1. They must first pass a round of stringent electrical testing to make sure they function effectively.

2. Next, they are subjected to temperature tests to ensure they perform in high heat.

3. After the temperature testing, components need to pass a second set of electrical integrity tests.

4. Finally, the parts are also tested to standards for moisture, mechanical shock, vibration, and resistance to soldering heat.

Bottom Line on Automotive Grade Capacitors

The standard that defines “automotive grade” certification is rigorous. Meeting the requirements for AEC-Q200 certification is not easy, and users will know that approved components will perform reliably in a variety of extreme conditions. Despite the name, automotive grade parts are not limited to auto applications. An automotive capacitor may be an excellent choice for any application that will encounter difficult environments or extreme temperatures. 

최신 뉴스

Sorry, your filter selection returned no results.

개인정보 보호정책이 업데이트되었습니다. 잠시 시간을 내어 변경사항을 검토하시기 바랍니다. 동의를 클릭하면 Arrow Electronics 개인정보 보호정책 및 이용 조건에 동의하는 것입니다.

당사의 웹사이트에서는 사용자의 경험 향상과 사이트 개선을 위해 사용자의 기기에 쿠키를 저장합니다. 당사에서 사용하는 쿠키 및 쿠키 비활성화 방법에 대해 자세히 알아보십시오. 쿠키와 추적 기술은 마케팅 목적으로 사용될 수 있습니다. '동의'를 클릭하면 기기에 쿠키를 배치하고 추적 기술을 사용하는 데 동의하는 것입니다. 쿠키 및 추적 기술을 해제하는 방법에 대한 자세한 내용과 지침을 알아보려면 아래의 '자세히 알아보기'를 클릭하십시오. 쿠키 및 추적 기술 수락은 사용자의 자발적 선택이지만, 웹사이트가 제대로 작동하지 않을 수 있으며 사용자와 관련이 적은 광고가 표시될 수 있습니다. Arrow는 사용자의 개인정보를 존중합니다. 여기에서 당사의 개인정보 보호정책을 읽을 수 있습니다.