How Do Fingerprint Scanners Work? Optical vs Capacitive

게시자

Many modern IoT applications rely on fingerprint sensors for added safety and security, and to easily identify users. Fingerprint sensors are widespread in smartphones and other wearables, as well as in smart industry and smart home applications for entry identification and data security. The two most common fingerprint sensors in use today are optical sensors and capacitive sensors. Here’s how they work.

Optical vs. Capacitive Fingerprint Scanner

Whether you want to secure your phone or identify yourself before you enter a building, fingerprint sensors can add security and identification easily. There is two common ways that fingerprint sensors are being used today and that is optical and capacitive.

How Does a Fingerprint Optical Scanner Work?

Optical fingerprint sensors have been around for a while. The way an optical scanner works is by shining a bright light over your fingerprint and taking a digital photo. The light-sensitive microchip makes the digital image by looking at the ridges and valleys of the fingerprint, turning them into 1’s and 0’s, and creates the user’s own personal code. Figure 1 shows how the light source reads the fingerprint and where that information goes. The disadvantage to this, while highly unlikely, is that a digital photo can be replicated.

 Optical fingerprint sensor

Figure 1: Light source taking a digital image of a fingerprint. (Source: Android Authority/Robert Triggs)

Capacitive Fingerprint Sensors

In today’s world, capacitive fingerprint scanners are more common and found on phones. Similar to the capacitive touchscreen, it measures your finger by using human conductivity, creating an electrostatic field, and creating a digital image based on the electrostatic field.

To go into more detail, the capacitive fingerprint scanner uses tiny capacitor array circuits that track the detail of a fingerprint. It uses the ridges of your fingerprint that is placed over the conductive plates which changes the charge stored in the capacitor, while the valleys (air gaps) leave the charge on the capacitor unchanged. An operational amplifier integrator circuit tracks these changes that can then be recorded by an analog-to-digital converter, where this digital data can be analyzed. Figure 2 shows the physics behind this.

Capacitive fingerprint sensor schematic 

Figure 2: How a capacitive fingerprint scanner captures digital images (Source: Android Authority/Robert Triggs)

This technology is a lot harder to bypass since an image cannot get passed capacitive fingerprint sensor and other materials will record different changes in charge on the capacitor. While it is more expensive, it’s also more complex and secure.

As we become more advanced and IoT keeps growing, accurate data collection via sensors becomes more important. Smartphones are the best example on how sensors are quickly changing the way we go about our days. After all, it was only a few years ago that phones didn’t have touchscreen or fingerprint applications on them.

For more articles like this one, check out:

See whether the Arduino Uno Rev 3 or Raspberry Pi 3 is the board for your next project!

See the inner works of Uninterruptible Power Supplies (UPS) and if you need one.

See how Motion Sensors work!

Learn the physics behind how Touch Sensors work.

최신 뉴스

Sorry, your filter selection returned no results.

개인정보 보호정책이 업데이트되었습니다. 잠시 시간을 내어 변경사항을 검토하시기 바랍니다. 동의를 클릭하면 Arrow Electronics 개인정보 보호정책 및 이용 조건에 동의하는 것입니다.

당사의 웹사이트에서는 사용자의 경험 향상과 사이트 개선을 위해 사용자의 기기에 쿠키를 저장합니다. 당사에서 사용하는 쿠키 및 쿠키 비활성화 방법에 대해 자세히 알아보십시오. 쿠키와 추적 기술은 마케팅 목적으로 사용될 수 있습니다. '동의'를 클릭하면 기기에 쿠키를 배치하고 추적 기술을 사용하는 데 동의하는 것입니다. 쿠키 및 추적 기술을 해제하는 방법에 대한 자세한 내용과 지침을 알아보려면 아래의 '자세히 알아보기'를 클릭하십시오. 쿠키 및 추적 기술 수락은 사용자의 자발적 선택이지만, 웹사이트가 제대로 작동하지 않을 수 있으며 사용자와 관련이 적은 광고가 표시될 수 있습니다. Arrow는 사용자의 개인정보를 존중합니다. 여기에서 당사의 개인정보 보호정책을 읽을 수 있습니다.