How Do Fingerprint Scanners Work? Optical vs Capacitive

发布人是

Many modern IoT applications rely on fingerprint sensors for added safety and security, and to easily identify users. Fingerprint sensors are widespread in smartphones and other wearables, as well as in smart industry and smart home applications for entry identification and data security. The two most common fingerprint sensors in use today are optical sensors and capacitive sensors. Here’s how they work.

Optical vs. Capacitive Fingerprint Scanner

Whether you want to secure your phone or identify yourself before you enter a building, fingerprint sensors can add security and identification easily. There is two common ways that fingerprint sensors are being used today and that is optical and capacitive.

How Does a Fingerprint Optical Scanner Work?

Optical fingerprint sensors have been around for a while. The way an optical scanner works is by shining a bright light over your fingerprint and taking a digital photo. The light-sensitive microchip makes the digital image by looking at the ridges and valleys of the fingerprint, turning them into 1’s and 0’s, and creates the user’s own personal code. Figure 1 shows how the light source reads the fingerprint and where that information goes. The disadvantage to this, while highly unlikely, is that a digital photo can be replicated.

 Optical fingerprint sensor

Figure 1: Light source taking a digital image of a fingerprint. (Source: Android Authority/Robert Triggs)

Capacitive Fingerprint Sensors

In today’s world, capacitive fingerprint scanners are more common and found on phones. Similar to the capacitive touchscreen, it measures your finger by using human conductivity, creating an electrostatic field, and creating a digital image based on the electrostatic field.

To go into more detail, the capacitive fingerprint scanner uses tiny capacitor array circuits that track the detail of a fingerprint. It uses the ridges of your fingerprint that is placed over the conductive plates which changes the charge stored in the capacitor, while the valleys (air gaps) leave the charge on the capacitor unchanged. An operational amplifier integrator circuit tracks these changes that can then be recorded by an analog-to-digital converter, where this digital data can be analyzed. Figure 2 shows the physics behind this.

Capacitive fingerprint sensor schematic 

Figure 2: How a capacitive fingerprint scanner captures digital images (Source: Android Authority/Robert Triggs)

This technology is a lot harder to bypass since an image cannot get passed capacitive fingerprint sensor and other materials will record different changes in charge on the capacitor. While it is more expensive, it’s also more complex and secure.

As we become more advanced and IoT keeps growing, accurate data collection via sensors becomes more important. Smartphones are the best example on how sensors are quickly changing the way we go about our days. After all, it was only a few years ago that phones didn’t have touchscreen or fingerprint applications on them.

For more articles like this one, check out:

See whether the Arduino Uno Rev 3 or Raspberry Pi 3 is the board for your next project!

See the inner works of Uninterruptible Power Supplies (UPS) and if you need one.

See how Motion Sensors work!

Learn the physics behind how Touch Sensors work.

最新消息

Sorry, your filter selection returned no results.

请仔细阅读我们近期更改的隐私政策。当按下确认键时,您已了解并同意艾睿电子的隐私政策和用户协议。

本网站需使用cookies以改善用户您的体验并进一步改进我们的网站。此处阅读了解关于网站cookies的使用以及如何禁用cookies。网页cookies和追踪功能或許用于市场分析。当您按下同意按钮,您已经了解并同意在您的设备上接受cookies,并给予网站追踪权限。更多关于如何取消网站cookies及追踪的信息,请点击下方“阅读更多”。尽管同意启用cookies追踪与否取决用户意愿,取消网页cookies及追踪可能导致网站运作或显示异常,亦或导致相关推荐广告减少。

我们尊重您的隐私。请在此阅读我们的隐私政策。