What is neuromorphic engineering?

게시자

Nearly every industry and sector include engineers, a profession that can generally be thought of as professional creators. Common, traditional specialties include electrical, mechanical, civil, structural, and architectural engineering. There are, however, a variety of engineering subdisciplines that utilize various facets of traditional engineering, such as aerospace engineering, but combine mechanical and electrical engineering with physics.

One of the newest sub-fields is neuromorphic engineering, which combines electrical, computer, and mechanical engineering with biology, physics, and neuroscience. Neuromorphic engineering is already being explored in industries around the world, with broad goals and implications for the future of computing and human development.

Neuromorphic engineering vs. neuromorphic computing

In another article that discusses neuromorphic computing, we discussed neuromorphic computing, a subset of computer engineering dedicated to structuring hardware to handle processing loads in a similar structure to what the human brain does. Most often, neuromorphic engineering systems utilize VLSI (very-large-scale integration) systems to mimic the neurological architecture of the human nervous system.

While neuromorphic computing is limited to the ‘thinking’ aspect of the brain, similar to a neuromorphic AI system, neuromorphic engineering encapsulates recreating the entire ‘nervous system’ that would be found in neuromorphic devices, including sensing, actuating, and other tactile actions. However, a majority of the focus in the field of neuromorphic engineering can be found on the brain side, as the brain is the most complex and unknown aggregate of the nervous system.

Future of neuromorphic engineering

Neuromorphic engineering has, somewhat surprisingly, aided in an analog reawakening of analog computing in the electronics and computing world, because it demands development in both the neural and sensory aspects of neuroscience. Analog electronics were quickly shrouded by the impact of the digital era, and processors of all shapes and sizes rely on digital processing techniques. However, the growth of neuromorphic computing and engineering has prodded researchers, companies, and scientists to search for analog alternatives for historically digital applications, and to re-develop existing analog technology through the new neuromorphic engineering lens.

Neuromorphic engineering is still in its infancy, yet its influence on the future of electronics and computing has already been profound. Companies such as Intel, IBM and Google have dedicated vast resources to push the boundaries of neuromorphic engineering strategies in an effort to realize computing architecture revolutions. In their eyes, the most hopeful reward of neuromorphic engineering is likely a perfectly sentient model of the human brain, and ultimately the entire nervous system, that would exist in a nearly human robot.

Neuromorphic computing architecture

However, in the more realistic short term, neuromorphic engineering yields new knowledge of computational architectures, such as understanding neural plasticity in software, or even a complete renaissance of traditional computing.

As it sits between your ears, your brain is capable of learning, adapting, understanding and inferring infinitely better than even the most complex VLSI neuromorphic systems. In its current state, neuromorphic engineering exists entirely to help computer scientists and neurologists mutually understand their fields in new ways and challenge the status quo of each existing understanding.


관련 뉴스 기사

2025 years ago

2025 years ago

2025 years ago

2025 years ago

최신 뉴스

Sorry, your filter selection returned no results.

개인정보 보호정책이 업데이트되었습니다. 잠시 시간을 내어 변경사항을 검토하시기 바랍니다. 동의를 클릭하면 Arrow Electronics 개인정보 보호정책 및 이용 조건에 동의하는 것입니다.

당사의 웹사이트에서는 사용자의 경험 향상과 사이트 개선을 위해 사용자의 기기에 쿠키를 저장합니다. 당사에서 사용하는 쿠키 및 쿠키 비활성화 방법에 대해 자세히 알아보십시오. 쿠키와 추적 기술은 마케팅 목적으로 사용될 수 있습니다. '동의'를 클릭하면 기기에 쿠키를 배치하고 추적 기술을 사용하는 데 동의하는 것입니다. 쿠키 및 추적 기술을 해제하는 방법에 대한 자세한 내용과 지침을 알아보려면 아래의 '자세히 알아보기'를 클릭하십시오. 쿠키 및 추적 기술 수락은 사용자의 자발적 선택이지만, 웹사이트가 제대로 작동하지 않을 수 있으며 사용자와 관련이 적은 광고가 표시될 수 있습니다. Arrow는 사용자의 개인정보를 존중합니다. 여기에서 당사의 개인정보 보호정책을 읽을 수 있습니다.