RC Circuit Basics - Low & High Pass Filtering & Formulas

Analog electronics employ three basic, linear passive components: the resistor (R), the capacitor (C), and the inductor (L). These three components create four basic circuits: RC, LC, RL, and RLC. The circuits’ names indicate the components involved.

RC circuits and their behaviors form the basis of many analog electronics, and passive signal filters rely on them extensively. The RC filter, as we will see below, commonly blocks out unwanted frequencies.

What is an RC Circuit?

1018_RC_Circuits_inset_1

The purest form of an RC circuit consists of a resistor and a capacitor connected in parallel with a constant DC power supply. When someone disconnects the power supply, the current discharging from the capacitor is equal to the current through the resistor. The voltage decreases exponentially with time, and the time required for it to discharge fully is five time constants, or Ƭ.

RC Circuit Formula to define Ƭ as follows:

1018_RC_equation

In this case, we express Ƭ in seconds, R in Ohms, and C in Farads. It will take five time constants to fully charge the capacitor in a similar circuit with the resistor in series between the power supply and capacitor. It is important to note, however, that “fully” is an approximation. The amount of charge we applied over five time constants accounts for about 99.3 percent of the maximum charge. At that point the flow of charge is negligible, and we can consider the capacitor “fully” charged or discharged.

RC Power Supply Circuits

A capacitor with stored charge can smooth out a variable power supply. If a capacitor outputs a square DC waveform, the capacitor can:

  1. Charge during the powered cycles
  2. Discharge while the power level is zero

The time constant will dictate how well this smooths the output of a circuit. If the period of a power cycle is greater than 5Ƭ, the output of the circuit will still approach a zero value. The higher the time constant of the circuit, the closer the output will be to a perfectly smooth DC.

RC High-Pass & Low Pass Filters

1018_RC_Circuits_inset_2

Image via Wikimedia Commons

Because it takes some time for a capacitor to charge and discharge, these devices are ideal for use as frequency filters. To function as a low-pass filter (also known as an RC Integrator), a voltage source connects directly to a resistor, and a capacitor connects in series with the voltage output as shown in the figure above. In this scenario, because the capacitor never reaches a full charge when the input frequency is too high, the capacitor can intercept current that would otherwise go to the output of the circuit as it pulses. As a result, the electrical output approaches zero above a particular frequency.

1018_RC_Circuits_inset_3

Image via Wikimedia Commons

An RC high-pass filter, also known as an RC Differentiator, works oppositely. The input signal applies directly to the capacitor with a resistor in parallel with the output, as shown above. By arranging components in this way, high-frequency signals can pass, while the capacitor blocks any frequencies that are too low. Therefore, the capacitor acts as an open circuit if the oscillations stay above a minimum speed.

RC circuits are one of the four basic circuit types fundamental to analog electronics. In their purest form, they consist of only two components. Despite their simplicity, we can exploit the relationship between these components for a variety of applications. 

最新消息

Sorry, your filter selection returned no results.

请仔细阅读我们近期更改的隐私政策。当按下确认键时,您已了解并同意艾睿电子的隐私政策和用户协议。

本网站需使用cookies以改善用户您的体验并进一步改进我们的网站。此处阅读了解关于网站cookies的使用以及如何禁用cookies。网页cookies和追踪功能或許用于市场分析。当您按下同意按钮,您已经了解并同意在您的设备上接受cookies,并给予网站追踪权限。更多关于如何取消网站cookies及追踪的信息,请点击下方“阅读更多”。尽管同意启用cookies追踪与否取决用户意愿,取消网页cookies及追踪可能导致网站运作或显示异常,亦或导致相关推荐广告减少。

我们尊重您的隐私。请在此阅读我们的隐私政策。