How Does a Phase Shifter Work? RF Phase Shifter Types

As we explore phase shifting, let’s first refresh our memory on how AC power works. In single phase power, voltages oscillate between -120 and +120 volts in a sinusoidal pattern. Three-phase power smooths out these peaks and troughs by adding another two cycles oscillating at the same frequency. Each of the three phases applies —or shifts— at 120 degrees to each other, which means the positive and negative sums never equal zero.

We can apply this multi-phase arrangement in several different areas. Here are two examples:

- An electric utility well can apply phase shifting upstream of consumer usage to help balance line loads.

- In audio phase shifting, a sound engineer can produce a strange guitar or another instrumental effect by overlaying a second phase-shifted signal on the original. When these signals are 180 degrees out of phase— one wave starts at half the time period of the first wave from the same source, causing a positive wave to meet the second negative wave— the sound waves will actually cancel each other out. Theoretically, this will produce silence, and it explains the principle behind active noise-reducing headphones.

RF Phase Shifting: How Does a Phase Shifter Work?

While audio and electrical supply applications are forms of phase shifting, we usually use the term to refer to a “phase shift module,” or the manipulation of radio waves. Just like sound and electricity, or waves on water for that matter, radio waves of the same frequency can combine with each other to amplify or cancel signals when their phases align correctly.

We can illustrate this principle with an array of dipole antennas, which normally send out a signal in all directions, to direct signals based on how each signal’s phase angle is aligned. Microwave frequencies, which operate between 300 MHz and 300 GHz frequencies, are the normal target of this kind of phase shifting. Antenna arrangements that allow for this type of directional RF transmission are known as phased arrays.

RF Phase Shifter Design & Types of Phase Shifters

There are several types of devices we can use to accomplish RF phase shifting, and we can divide them into four different categories:

Active – A powered device that electronically amplifies the signal while performing a phase shift operation

Passive – No power is added, but the device attenuates a signal as a part of the operation

Analog – Phase shifting is continuously variable

Digital – A discreet set of phase shifts

We can also categorize RF phase shifters by the type of technology they use. Semiconductor solutions play an active role in transistors or a passive role in diode usage. Non-semiconductor-based solutions are available in the form of ferrite and ferroelectric-based designs, as well as microelectromechanical systems (MEMS).

最新消息

Sorry, your filter selection returned no results.

请仔细阅读我们近期更改的隐私政策。当按下确认键时,您已了解并同意艾睿电子的隐私政策和用户协议。

本网站需使用cookies以改善用户您的体验并进一步改进我们的网站。此处阅读了解关于网站cookies的使用以及如何禁用cookies。网页cookies和追踪功能或許用于市场分析。当您按下同意按钮,您已经了解并同意在您的设备上接受cookies,并给予网站追踪权限。更多关于如何取消网站cookies及追踪的信息,请点击下方“阅读更多”。尽管同意启用cookies追踪与否取决用户意愿,取消网页cookies及追踪可能导致网站运作或显示异常,亦或导致相关推荐广告减少。

我们尊重您的隐私。请在此阅读我们的隐私政策。