在本文中,了解 Analog Devices 的新型中带宽器件技术和 LTspice 仿真软件如何帮助分析状态监控系统的大量数据。
数字技术的进步没有丝毫放缓的迹象,已渗透到我们生活的方方面面。为机器提供智能并非奥威尔式的反乌托邦;由于自动化反馈环路有助于减少直接维护时间,因此可提高工厂自动化的效率。但是,如果没有合适的工具和软件,很难可视化和理解底层数据,因此很难做出可行的决策。在本文中,了解 Analog Devices 的新型中带宽器件技术和 LTspice 仿真软件如何帮助分析状态监控系统的大量数据。
工业 4.0 描述了将大数据的优势带入工厂车间的概念。装有传感器的机器可监控自身的性能并相互通信,从而共同分担整个工作载荷,同时向后台提供重要的诊断信息,而且无论在同一座建筑物里还是在不同的大陆都可以实现。
对 ADI 产品进行的一项快速调查显示,ADI 公司主要致力于为工业物联网 (IIOT) 提供解决方案,即从传感器到云的各种稳定可靠的高性能信号链组件。
在工业自动化中的一个应用领域就是状态监控 (CbM),通过仔细校准机器的标称工作特性,然后使用本地传感器密切监控机器本身的状态。偏离标称信号的状态即表示机器需要维护。因此,配备状态监控系统的机器可根据实际需要进行维护,而不是相对随意地安排维修计划。
确定电机健康状况的最佳方法是检查其振动信号。Analog Devices 的 MEMS 技术可用于持续监控电机的振动特征,并与已知无故障电机的特征比较,由此判断电机的运行状况。事实上,每种电机故障都有其自己的独特谐波特征。通过查看振动模式的谐波成分,可以检测轴承、内环和外环,甚至齿轮箱齿中的故障。
在 LTspice 中分析振动数据
为了产生用于在 LTspice 中进行傅里叶分析的数据,将三个 ADXL1002 加速度计连接到电机,如图 1 所示,以测量侧向、垂向和纵向(分别为 X、Y 和 Z)振动。
图 1. 分别在侧向、垂向和纵向测得 X、Y 和 Z 通道的振动。
将振动数据下载并保存到 Microsoft Excel 电子表格中。在 500 kSPS 速率下进行数据采样,通过一秒振动数据得到三列 Microsoft Excel 数据,每列数据长 500,000 行。X、Y 和 Z 数据样本如图 2 所示。
图 2. 提取 X、Y 和 Z 数据。
现在可检查此数据的谐波成分,以确定电机的运行状况。傅里叶分析是从波形中提取分量频谱的数学过程。纯正弦波的频谱中仅包含一个频率,称为基波频率。如果正弦波失真,将出现除基波频率之外的其他频率。通过分析电机振动模式的频谱,可精确地诊断其运行状况。
由于能够执行傅里叶分析的硬件和软件通常价格很高,所以这里我们介绍一种可以对 MEMS 数据进行傅里叶分析的方法,基本上无需任何成本。
LTspice 是一款功能强大、可免费使用的电路仿真器,它可以使用从状态监控系统的 MEMS 传感器中获取的振动数据,通过傅里叶分析绘制任何波形的频谱。
通过图 3 所示的数据格式,LTspice 能够生成傅里叶分析图,其中每个振动数据点都与其相应的时间戳配对。
图 3. 时间和电压实例的格式。
使用 Microsoft Excel 将数据转换成这种格式相对比较容易。过程如下。
首先,将图 2 中的数据列分成 Excel 文件中的三个工作表,命名为 X、Y 和 Z,如图 4 所示。
图 4. 创建三个工作表后,将 X、Y 和 Z 数据复制到相应的工作表中。
在数据左侧插入一列—此列为每个数据值的时间戳。
由于在一秒内提取了 500,000 个数据样本,每个数据点间隔 2 µs。因此,在新列的第一个单元格中,输入
2E-6
代表 2 µs 处的第一个时间戳。
填充其余时间戳列数值的最简单方式是使用 Series 命令。在 Microsoft Excel 的搜索框中,键入“Series”以显示图 5 所示的菜单选项。
从下拉菜单中选择填充系列或模式 (Fill Series or Pattern),然后选择系列 (Series…)。
图 5. 如何在 Microsoft Excel 中填充多个单元格。
此时出现图 6 所示的对话框,选中列 (Columns) 和线性 (Linear) 单选按钮。在步进值 (Step value) 中输入 2E-6,在停止值 (Stop value) 中输入 1。
图 6. 使用线性扩展数据集填充单元格。
点击确定 (OK) 填充左列数据时间戳,从 2 µs 递增到 1 秒。先填充前几个值,然后将光标一直拖到数据范围末尾的底部单元格,也可达到同样的目的—但对于 500,000 行数据,需要拖得很长。
现在就得到 LTspice 可以处理的数据格式,如图 7 所示。
图 7. 列显示时间戳和相应的数据样本。
如果数据集很大而采样间隔很低,Microsoft Excel 可能会将时间戳四舍五入到不适当的小数位数。如果是这种情况,突出显示第一列,然后选择格式化 (Format) > 格式化单元格 (Format Cells),如图 8 所示。
图 8. 重新选择单元格的格式以去除所有舍入误差。
选择合适的小数位数,如图 9 所示。
图 9. 将时间戳分辨率增加到小数点后 5 位。
在填充时间戳列并扩展有效位数后,将每个工作表的两列复制到记事本或其他文本编辑器文件中,如图 10 所示。
图 10. 包含时间和振动数据的文本文件。
总共应该有三个文本文件,其中包含状态监控系统中 X、Y 和 Z 轴的振动数据。
现在,可将此数据直接读入 LTspice 中。
按照图 11 所示在 LTspice 中构建原理图。在该设计中,有六个电压源分别对应于故障和非故障的 X、Y、Z 轴的数据。这样就可以对新电机的振动数据执行傅里叶分析,并将分析结果与疑似故障电机数据的傅里叶分析进行比较。此方法的一大优势是新(非故障)电机的频率图可以叠加在疑似故障电机的频率图上,因此,性能差异一目了然。
图 11. 显示故障电机和非故障电机振动数据电压输出的 LTspice 原理图。
LTspice 命令
.options plotwinsize=0 numdgt=15
去除了 LTspice 中的默认压缩设置,有时会产生更清晰的结果。如果忽略此行,仿真运行速度会更快,但产生的结果可能不太精确。
完成原理图后,右键单击每个电压源,选择高级 (Advanced) 按钮,选中 PWL 文件 (PWL File) 单选按钮,然后输入包含振动数据的相应文本文件的文件名,如图 12 所示。这将创建一个分段线性电压源,其中包含一系列电压及其相应的时间实例。如果这些文本文件与 LTspice 文件存储在同一目录中,则操作会更简单。
图 12. 根据振动数据创建分段线性电压源。
然后应使用以下命令进行配置,在原始振动测试过程中运行瞬态分析
.tran
最后运行仿真。仿真可能需要一段时间才能完成,具体取决于数据点和瞬态分析时长。
故障电机和非故障电机的仿真结果如图 13 所示。该实验在一台转速为 587.3 rpm 的电机上进行,电机的轴承出现故障,外环未对准,负载为 12 磅。图中还显示了同一转速下无故障电机的振动模式。显然,与非故障电机相比,故障电机的振动特征幅度明显更高。
图 13. 故障和非故障电机振动数据的时域结果。
突出显示波形 (Waveform) 窗口,然后从菜单栏中选择查看 (View) > FFT。这将基于瞬态数据计算 FFT。
从图 2 中的数据可以看到,在 35,000 V 这样如此高的失调电压上,我们通过数字只能看到很小的变化。在 LTspice 中进行仿真时,这些数据会转换成一个 35,000 V 的直流失调电压,并在此失调电压上还会叠加一个交流波形。
在傅里叶分析图中,此失调电压在频谱位置的直流点上表现为很大的一个尖刺,因此,当 LTspice 自动缩放 Y 轴时,相关谐波比例极小。右键单击 X 轴,指定高于直流电压的频率范围,由此可忽略直流失调电压—5 Hz 至 1 kHz 应该足够。
右键单击 Y 轴,选择线性 (Linear) 单选按钮以查看谐波,如图 14 所示。
图 14. 去除直流杂散在线性坐标系中显示的傅里叶图。
在图形区单击鼠标右键,可添加额外的绘图窗格,即可将振动频谱成分以 X、Y 和 Z 图分别呈现,如图 15 所示。
图 15. X、Y 和 Z 振动图分离。
结论
Analog Devices 的 MEMS 加速度计系列能够提供关键数据,进而在早期检测出电机故障,但这只是解决方案的一半。必须使用傅立叶分析仔细研究这些数据。遗憾的是,能够执行傅里叶分析的设备或软件通常很昂贵。而 LTspice 能够免费精确分析 CbM 数据,从而实现早期检测和诊断机器故障。