VCXO vs. NCO – What’s Your Ideal Solution?

发布人是

Voltage Controlled Crystal Oscillators (VCXOs) are ubiquitous in timing systems.However, a new player has recently entered the scene that has designers curious. Is it worth making the switch to Numerically Controlled Oscillators (NCOs) in your projects?

VCXOs

VCXOs are used for extremely fine adjustment of frequencies.  A typical tuning range may be only a few hundred ppm (parts per million) over an input voltage range of 0 to 3.3V.  This type of tuning is useful when an output frequency must match an external reference very precisely, such as when a VXCO is used as a clock generator for synchronization. 

参阅相关产品

ABLJO-V-155.520MHZ

Abracon 可控振荡器 查看

This method of clock tuning is usually easy to implement, as the control voltage is often already an inherent part of the circuit and can be used to “tug” the oscillating crystal’s frequency up or down as needed.  A crystal oscillator can even have voltage control implemented discretely later in a design cycle using voltage-controlled capacitors, standard capacitors, and resistors so long as the designer knows the precise parameters of the crystal.  The amount that the frequency can be tugged or pulled depends on the resistance and loading capacitance of the crystal and even the package.  This design typically combines a crystal, tuning circuitry, and a PLL to generate the final clock outputs to be used in a circuit. 

参阅相关产品

SI52144-A01AGM

Silicon Labs 时钟生成器和同步器 查看

NCOs

Working with numerically controlled oscillators is quite a bit more complicated than putting varicaps around your crystal. NCOs use a microcontroller to read the speed of the rising edge of a clock pulse to determine the actual frequency, then match that value against a look up table to generate the numerical values for the sine wave that most closely matches that frequency.  The output of an NCO is a digital value that can be run through a DAC to generate a very accurate clock frequency based on what the crystal was trying to achieve.  Depending on your design, this may mean you can use a cheaper and less accurate crystal while getting a cleaner clock signal on the other end of your NCO.  Companies like Microsemi that see the value in clocks with jitter below 0.7ps RMS, especially for applications like 10G PHYs, create single chips that combine the MCU and DAC to simply accept any messy clock signal and output a crisper version.

This takes the load off the customer, as the lookup table is pre-programmed and the complete chip is already well-defined.  Many designers have clung to bulky and expensive VCXO solutions because they are still easier than rolling your own NCO solution, even in applications that cannot tolerate much jitter.  Now that these chips are established and coming down in price, you may just be out of excuses to tug around a wandering oscillator frequency rather than use an NCO.  

最新消息

Sorry, your filter selection returned no results.

请仔细阅读我们近期更改的隐私政策。当按下确认键时,您已了解并同意艾睿电子的隐私政策和用户协议。

本网站需使用cookies以改善用户您的体验并进一步改进我们的网站。此处阅读了解关于网站cookies的使用以及如何禁用cookies。网页cookies和追踪功能或許用于市场分析。当您按下同意按钮,您已经了解并同意在您的设备上接受cookies,并给予网站追踪权限。更多关于如何取消网站cookies及追踪的信息,请点击下方“阅读更多”。尽管同意启用cookies追踪与否取决用户意愿,取消网页cookies及追踪可能导致网站运作或显示异常,亦或导致相关推荐广告减少。

我们尊重您的隐私。请在此阅读我们的隐私政策。